Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Current Biochemistry

Bioethanol Production by Using Detoxified Sugarcane Bagasse Hydrolysate and Adapted Culture of Candida tropicalis Inda Setyawati; Laksmi Ambarsari; Siti Nur'aeni; Suryani Suryani; Puspa Julistia Puspita; Popi Asri Kurniatin; Waras Nurcholis
Current Biochemistry Vol. 2 No. 1 (2015)
Publisher : IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Ethanol is considered as the most promising alternative fuel, since it can be produced from a variety of agriculturally-based renewable materials, such as sugarcane bagasse. Lignocellulose as a major component of sugarcane bagasse is considered as an attractive renewable resource for ethanol production due to its great availability and relatively low cost. The major problem of lignocellulose is caused by its need for treatment to be hydrolyzed to simple sugar before being used for bioethanol production. However, pretreatment using acid as hydrolyzing agent creates some inhibitor compounds that reduce ethanol production because these compounds are potential fermentation inhibitors and affect the growth rate of the yeast. Reduction of these by-products requires a conditioning (detoxification and culture starter adaptation). Thus, the aim of this study was to evaluate bioethanol production by fermentation with and without detoxified sugarcane bagasse acid hydrolysate using adapted and non-adapted culture of C. tropicalis. According to this study, the highest ethanol amount was obtained about 0.43 % (v/v) with an ethanol yield of 2.51 % and theoretical yield of 4.92 % by fermentation of sugarcane bagasse hydrolysate with detoxification using the adapted strain of C. tropicalis at 72 hours fermentation time. Furthermore, the addition of 3 % glucose as co-substrate on detoxified-hydrolysate media only achieved the highest ethanol concentration 0.21 % after 24 hours fermentation with the ethanol yield 0.69 % and theoretical ethanol yield 1.35 %, thus it can be concluded that the addition of glucose could not increase the ethanol production.
The Addition Effects of Glucose as a Co-substrate on Xylitol Production by Candida guilliermondii Laksmi Ambarsari; Suryani Suryani; Steffanus Gozales; Puspa Julistia Puspita
Current Biochemistry Vol. 2 No. 1 (2015)
Publisher : IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

High cost production is one of the constraints of the commercial xylitol production due to high energy needed and pure raw materials. Therefore, it is necessary to improve the xylitol production eficiently with lower production cost by using microorganisms. The research objectives were to determine the optimum xylitol production from xylose by metabolism of C. guilliermondii and effect of glucose as a co-substrate in fermentation medium. The ratio of glucose : xylose (g/L) was 1:25, 1:12, 1:5 and 1:2.5 respectively. The xylitol concentration was measured by spectrophotometer method (D-sorbytol/D-xylitol kit). The result showed that the exponential phase of Candida guilliermondii was 12 h to 36 of incubation and optimum of incubation time to produce the highest xylitol was 72 h. The best ratio- of glucose : xylose to produce xylitol was 9 g/L glucose : 45 g/L xylose (1 : 5). The xylitol concentration produced from medium with the addition of glucose was 2.85 g/L. This concentration increased five times compared to that in the medium without addition of glucose that only reached 2.85 g/L. According to this study, the addition of glucose as a co-substrate could increase the xylitol production.
Trametes versicolor as Agent for Delignification of Rice Husks Laita Nurjanah; Syamsul Falah; Azmi Azhari; Suryani Suryani; I Made Artika
Current Biochemistry Vol. 1 No. 1 (2014)
Publisher : IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Rice husks contains 33.71% w/w lignocelluloses, the most abundantly available raw material on the earth for the production of biofuels and other valuable products. It is comprised of the carbohydrate polymers, cellulose, hemicellulose, and an aromatic polymer, lignin. One of the methods for removing the lignin component of rice husks is by delignification using white-rot-fungi. The aim of the study was to carry out delignification of rice husks using white-rot-fungi. The white-rot-fungi used here were Trametes versicolor and Phanerochaete chrysosporium. The study consisted of a biomass and microbial preparation, chemical assay of the rice husk, ligninase enzyme tests, and delignification of rice husks. Results showed that T. versicolor and P. chrysosporium have ligninase enzyme. The precentage of lignin from the total biomass rice husks was 23.61% w/w, and following the delignification process by T. versicolor for 20 days, the remaining lignin was 16.20% w/w, making the percentage of rice husks lignin degraded as 7.41% w/w. The biodelignification process also decreased the percentage of holocellullose, cellulose, and other extracted substances, and accordingly this increased the percentage of hemicellulose. Based on the ability of T. versicolor to degrade lignin of the rice husk at room temperature (28 ÂșC) as mentioned above, it can be concluded that T. versicolor has potential to be used for delignification process.
Delignifikasi Batang Kayu Sengon oleh Trametes versicolor Azmi Azhari; Syamsul Falah; Laita Nurjannah; Suryani Suryani; Maria Bintang
Current Biochemistry Vol. 1 No. 1 (2014)
Publisher : IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Delignification is a lignin degradation, a preliminary process in industries that used cellulose containing substrates. Sengon logs are often used for the material in pulp industry because it has high levels of cellulose and low level of lignin. The aim of this study was delignification of sengon logs by using T.versicolor. The methods used include observation growth of T.versicolor compared with Phanerochaete chrysosporium, the rate of of lignin degradation (black liquor), delignification of sengon logs using T.versicolor and the chemical assay of sengon logs before and after delignification. The results of this study showed that delignification by T.versicolor was faster compared to P.chrysosporium based on the rate of lignin degradation (black liquor). The result showed that delignification by T.versicolor at room temperature reduced lignin of sengon logs by 37.31% within 20 days. Chemical assay performed on delignified sengon wood showed decreased level of ethanol benzene, soluble extractive substances, holocellulose, and cellulose and an increase of hemicellulose level.