Claim Missing Document
Check
Articles

Found 15 Documents
Search

Analisis Kinerja Algoritma CART dan Naive Bayes Berbasis Particle Swarm Optimization (PSO) untuk Klasifikasi Kelayakan Kredit Koperasi Riyanto, Eko Arif; Juninisvianty, Tri; Nasution, Doddy Ferdian; Risnandar, Risnandar
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 8 No 1: Februari 2021
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.0812988

Abstract

Koperasi memiliki peranan penting terutama untuk masyarakat kecil dan menengah. Salah satu kendala yang dirasakan oleh koperasi adalah analisa pemberian kredit yang dilakukan secara manual dan hanya berdasarkan kedekatan secara personal dengan anggota sehingga menyebabkan terjadinya kredit – kredit  macet yang tidak diduga. Oleh karena itu perlu adanya perhitungan yang sistematis dalam pemberian kredit kepada para peminjam. Teknik klasifikasi data mining merupakan salah satu teknik yang bisa digunakan dalam menentukan kelayakan kredit. Tujuan dari penelitian ini adalah untuk menentukan metode terbaik untuk klasifikasi kelayakan kredit koperasi menggunakan software Rapidminer dengan membandingkan perhitungan algoritma CART, Naive Bayes, optimasi CART + PSO, dan Naive Bayes + PSO. Data yg digunakan adalah 113 data anggota koperasi. Dari perhitungan dengan acuan kriteria pekerjaan, pendapatan, usia, jenis kelamin, jumlah pinjaman, jangka waktu, akan memperoleh metode terbaik untuk klasifikasi kelayakan kredit. Metode terbaik yang dihasilkan dari penelitian ini adalah metode Naive Bayes + PSO. Nilai accuracy yang diperoleh dari penelitian ini adalah 96,43%, nilai recall 94,12%, niilai precision 100%. Dengan nilai AUC sebesar 0,963 , penelitian ini termasuk dalam klasifikasi baik. Hasil dari penelitian ini dapat digunakan sebagai salah satu pertimbangan untuk klasifikasi kelayakan kredit pada koperasi simpan pinjam. AbstractCredit Union have an important role especially to the small and medium society. One of the problem  that credit union have is an analyzing credit manually and only based on closeness personally that can be an unexpected bad credit for credit union. Therefore, it is necessary to build a systematic calculation to give a credit for debtor. Classification technic in data mining is one of the technic that can use to classify the credit properness. The purpose of this study is to get the best method to classify the credit properness using Rapidminer by compare the calculation of CART, Naive Bayes and the optimization of CART+PSO and Naive Bayes+PSO. The study using 113 data member of credit union. From the calculation reference to the criteria of occupation, income, age, gender, loan amount, loan term, will get the best method for this study. The best method from this study is the Naive Bayes+PSO. The accuracy value obtained from this study was 96.43%, the recall value was 94.12%, and the precision value is 100%. AUC value of 0.963 indicates that this study is included in the good classification. The results of this study can be used as a consideration for the classification of the credit properness of credit union.
Klasifikasi Mahasiswa HER Berbasis Algoritma SVM dan Decision Tree Purnama, Jajang Jaya; Nawawi, Hendri Mahmud; Rosyida, Susy; Ridwansyah, Ridwansyah; Risnandar, Risnandar
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 7 No 6: Desember 2020
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.0813080

Abstract

Mahasiswa di setiap perguruan tinggi dituntut untuk memperoleh pengetahuan dan keterampilan yang memenuhi syarat dengan prestasi akademik. Hasil dari pembelajaran mahasiswa didapat dari ujian teori dan praktek, setiap mahasiswa wajib menuntaskan nilai sesuai kriteria kelulusan minimum dari masing-masing dosen pengajar, jika dibawah batas minimum maka mahasiswa mengikuti her. Her adalah salah satu cara untuk menuntaskan kriteria kelulusan minimum. Mahasiswa yang mengikuti her setiap semesternya hampir mencapai angka yang relatif tinggi dari jumlah seluruh mahasiswa. Untuk mengurangi jumlah mahasiswa yang mengikuti her maka dibutuhkan sebuah metode yang dapat mengurangi hal tersebut, dengan metode Support Vector Machine (SVM) dan Decision Tree (DT). SVM dan DT adalah salah satu metode klasifikasi supervised learning. Oleh karena itu, dalam penelitian ini menggunakan SVM dan DT. SVM dapat menghilangkan hambatan pada data, memprediksi, mengklasifikasikan dengan sampling kecil dan dapat meningkatkan akurasi dan mengurangi kesalahan. Klasifikasi data siswa yang melakukan her/peningkatan dengan mengimprovisasi model kernel untuk visualisasi termasuk bar, histogram, dan sebaran begitu juga Decision Tree mempunyai kelebihan tersendiri. Dari hasil penelitian ini telah didapatkan akruasi dan presisi model DT lebih besar dibandingkan dengan SVM, akan tetapi untuk recall DT lebih kecil dibandingkan SVM. AbstractStudents in each tertiary institution are required to obtain knowledge and skills that meet the requirements with academic achievement. The results of student learning are obtained from the theory and practice exams, each student is required to complete grades according to the minimum graduation criteria of each teaching lecturer, if below the minimum limit then students take remedial. Remedial is one way to complete the minimum passing criteria. Students who take remedial every semester almost reach a relatively high number of the total number of students. To reduce the number of students who take remedial, a method that can reduce this is needed, with the Support Vector Machine (SVM) and Decision Tree (DT) methods. SVM and DT are one of the supervised learning classification methods. Therefore, in this study using SVM and DT. SVM can eliminate barriers to data, predict, classify with small sampling and can improve accuracy and reduce errors. Data classification of students who do remedial/improvements by improving the kernel model for visualization including bars, histograms, and distributions as well as the Decision Tree has its own advantages. From the results of this study it has been obtained that the accuracy and precision of DT models is greater than that of SVM, but for recall DT is smaller than SVM.
Kombinasi K-NN dan Gradient Boosted Trees untuk Klasifikasi Penerima Program Bantuan Sosial Firasari, Elly; Khultsum, Umi; Winnarto, Monikka Nur; Risnandar, Risnandar
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 7 No 6: Desember 2020
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.0813087

Abstract

Kemiskinan bagi pemerintah Indonesia termasuk masalah yang sulit untuk diselesaikan. Upaya yang dilakukan pemerintah dalam mengatasi kemiskinan di Indonesia yaitudengan  program bantuan sosial meliputiBLT (Bantuan Langsung Tunai), PKH (Program Keluarga Harapan), Raskin (Beras Miskin), dan lain lain. Dalam Pelaksanaan program bantuan sosial saat masih sangat terbatas sehingga dalam penerimaan program bantuan tidak tepat sasaran. Data mining membantu untuk menentukan keputusan dalam memprediksi data di masa yang akan datang. Gradient Boosted Trees dan K-NN merupakan salah satu metode data mining untuk klasifikasi data. Masing-masing metode tersebut memiliki kelemahan. Gradient Boosted Trees menghasilkan nilai persentase akurasi lebih rendah dibanding metode K-NN. Dari permasalahan tersebut maka diusulkan metode kombinasi K-NN dan Gradient Boosted Trees untuk meningkatkan akurasi pada pelaksanaan program bantuan sosial agar tepat sasaran. Metode K-NN, Gradient Boosted Trees, K-NN-Gradient Boosted Treesdilakukan pengujian pada data yang sama untuk mendapatkan hasil perbandingan nilai akurasi. Hasil pengujian membuktikan bahwa kombinasi tersebut menghasilkan nilai persentase yang tinggi dibanding metode K-NN atau Gradient Boosted Trees yaitu 98.17%.AbstractPoverty for the Indonesian government is a problem that is difficult to solve. The efforts made by the government in overcoming poverty in Indonesia are through social assistance programs including BLT (Bantuan Langsung Tunai), PKH (Program Keluarga Harapan), Raskin (Beras Miskin), and others. In the implementation of the social assistance program when it was still very limited, the acceptance of the aid program was not on target. Data mining helps to determine decisions in predicting data in the future. Gradient Boosted Trees and K-NN are data mining methods for data classification. Each of these methods has weaknesses. Gradient Boosted Trees produce lower accuracy percentage values than the K-NN method. From these problems, a proposed method of combination of K-NN and Gradient Boosted Trees is used to improve the accuracy of the implementation of social assistance programs so that it is right on target. The K-NN, Gradient Boosted Trees, and K-NN-Gradient Boosted Trees methods are tested on the same data to get a comparison of the accuracy values. The test results prove that the combination produced a high percentage value compared to the K-NN or Gradient Boosted Trees method that is 98.17%.
Pengenalan Jalan Berlubang Berbasis Vision Menggunakan Pyramid Histogram Of Oriented Gradients Fitriansyah, Ahmad Habib; Rachmawati, Ema; Risnandar, Risnandar
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 3: Juni 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2023106820

Abstract

Lubang, sejenis kerusakan jalan, dapat merusak kendaraan dan berdampak negatif pada keamanan mengemudi dari pengemudi. Bahkan, dalam kasus yang parah dapat menyebabkan kecelakaan lalu lintas. Manajemen jalan berlubang yang efisien dan preventif di lingkungan jalan yang kompleks memainkan peran penting dalam mengamankan keselamatan pengemudi. Hal ini juga diharapkan dapat memberikan kontribusi terhadap pencegahan kecelakaan lalu lintas dan kelancaran arus lalu lintas. Di masa lalu, deteksi lubang terutama dilakukan melalui inspeksi visual oleh ahli manusia. Baru-baru ini, metode deteksi lubang otomatis menerapkan berbagai teknologi yang menyatukan teknologi dasar seperti sensor dan pemrosesan sinyal. Pada artikel ini, metode berbasis pengolahan citra dan pembelajaran mesin diaplikasikan untuk mengenali lubang di jalan. Penelitian ini menghasilkan model dari bentuk lubang dengan memanfaatkan ciri bentuk yang diekstraksi dari Pyramid Histogram of Oriented Gradients (PHOG). Untuk metode klasifikasi, peneliti menggunakan Support Vector Machine (SVM) dengan hasil terbaik diperoleh pada penggunaan kernel polynomial. Sistem pengenalan jalan berlubang yang diusulkan mampu menunjukkan hasil performa yang sangat baik, yaitu akurasi sebesar 94,45%, precision sebesar 96,13% recall sebesar 95,77%, dan F1-score sebesar 95,95%. AbstractPotholes on roads can damage vehicles and endanger drivers, potentially leading to accidents. Preventative management of potholes is crucial for driver safety and efficient traffic flow. Traditional methods of pothole detection relied on visual inspection, but automatic methods have been developed using sensors and signal processing. This article presents a new approach using image processing and machine learning to identify potholes on roads. The proposed system uses shape features extracted from Pyramid Histogram of Oriented Gradients (PHOG) and a Support Vector Machine (SVM) with polynomial kernels for classification. The system achieves high accuracy, precision, recall, and F1-Score, with an accuracy of 94.45%, precision of 96.130%, recall of 95.77%, and F1-Score of 95.950%.
Vision Transformer untuk Klasifikasi Kematangan Pisang Pangestu, Arya; Purnama, Bedy; Risnandar, Risnandar
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 11 No 1: Februari 2024
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.20241117389

Abstract

Produksi pisang di Indonesia pada tahun 2022 mencapai 9,6 juta ton buah. Metode konvensional yang digunakan untuk menentukan tingkat kematangan pisang masih mengandalkan indera penglihatan manusia dengan memperhatikan perubahan warna kulit pisang. Namun, penentuan tingkat kematangan pisang dengan metode ini memiliki beberapa kekurangan, seperti waktu yang lama, penilaian yang bersifat subjektif dan dapat menghasilkan hasil yang berbeda-beda bagi setiap individu. Oleh karena itu, teknologi computer vision dapat menjadi solusi yang efektif dalam mengklasifikasikan kematangan buah pisang secara otomatis. Penelitian ini menggunakan metodologi Vision Transformer (ViT) untuk mengklasifikasikan tingkat kematangan pada buah pisang, dengan tingkatan yang dibagi menjadi empat kategori, yaitu mentah, setengah matang, matang, dan terlalu matang. Penelitian dilakukan dengan menggunakan lima model ViT yang sudah dilatih sebelumnya atau pre-trained, yaitu ViT-B/16, ViT-B/32, ViT-L/16, ViT-L/32, and ViT-H/14 pada ImageNet-21k dan ImageNet-1k. Kemudian, model ViT tersebut dievaluasi dan dibandingkan dengan model CNN. Evaluasi dilakukan menggunakan metode cross-dataset dengan 5.068 citra pisang yang berbeda dari dataset latih. Hasil evaluasi menunjukkan model ViTL/16-in21k memiliki akurasi tertinggi sebesar 91,61%. Model ViT menunjukkan kemampuan generalisasi yang lebih baik, sementara CNN memiliki ukuran model dan waktu pelatihan yang lebih efisien.