p-Index From 2020 - 2025
4.735
P-Index
This Author published in this journals
All Journal Jurnal Ekonomi ASAS : Jurnal Hukum Ekonomi Syariah Agrointek Jurnal Akuntansi Multiparadigma Sinkron : Jurnal dan Penelitian Teknik Informatika Swabumi (Suara Wawasan Sukabumi) : Ilmu Komputer, Manajemen, dan Sosial Jurnal Pilar Nusa Mandiri Al-Urban: Jurnal Ekonomi Syariah dan Filantropi Islam Jurnal Teknik Informatika STMIK Antar Bangsa Expose: Jurnal Ilmu Komunikasi Distribusi Journal of Saintech Transfer JURNAL TEKNOLOGI INFORMASI Jurnal Ilmu Komputer dan Bisnis El-Usrah: Jurnal Hukum Keluarga Jurnal Ilmiah Edunomika (JIE) Abdimasku : Jurnal Pengabdian Masyarakat Jurnal Manajemen dan Bisnis Kreatif Al-Mal:Jurnal Akuntansi dan Keuangan Islam Journal of Islamic Law Jurnal AbdiMas Nusa Mandiri JOURNAL LA MEDIHEALTICO Jurnal Abdimas Bina Bangsa Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen ProBisnis : Jurnal Manajemen Jurnal Pengabdian pada Masyarakat Ilmu Pengetahuan dan Teknologi Terintegrasi Paradigma International Journal of Economics (IJEC) Indonesian Journal of Islamic Economics and Finance ABDIMU Jurnal Pengabdian Kepada Masyarakat Jurnal Pengabdian Masyarakat Jurnal Penelitian dan Pengabdian Masyarakat Jurnal Manajemen Rekayasa (Journal of Engineering Management) Engagement: Jurnal Pengabdian Kepada Masyarakat SMART: Jurnal Pengabdian Kepada Masyarakat Al-Intaj : Jurnal Ekonomi dan Perbankan Syariah Journal of Electrical Engineering and Informatics Smart Humanity: Jurnal Pengabdian Masyarakat Kesmas: Jurnal Kesehatan Masyarakat Nasional (National Public Health Journal)
Claim Missing Document
Check
Articles

Review Capital Structure and Good Corporate Governance Toward Islamic Banking Performance In Indonesia Ridwansyah, Ridwansyah; Saputro, Anip Dwi
Al-Urban: Jurnal Ekonomi Syariah dan Filantropi Islam Vol 2 No 1 (2018): Juni
Publisher : Universitas Muhammadiyah Prof. DR. HAMKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22236/alurban _vol2/is1pp61-80

Abstract

This study aims to review capital structure and the implementation of Good Corporate Governance (GCG) toward Islamic Banking performance in Indonesia. The research results can be depicted that the capital structure and corporate governance has been running well. Slowing Islamic banking is dominated by external economic slowdown that occurred in Indonesia. However, main sources of Islamic bank capital are core capital (core capital) which comes from the owners of the banks and quasi-equity. When the world financial crisis and the shareholders take their share of Islamic banks then certainly slowing global political factor because it is Identic with the capitalist and the capital structure of Islamic banks is still not much yet as the conventional banking which is inherently present in this global world.
The Diversification of Local Tuber Products for The Result of Gluten-Free Bakery Products Julianti, Elisa; Ridwansyah, Ridwansyah; Yusraini, Era; Karo-Karo, Terip
Journal of Saintech Transfer Vol. 1 No. 1 (2018): Journal of Saintech Transfer
Publisher : Talenta Publisher Universitas Sumatera Utara

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (239.046 KB) | DOI: 10.32734/jst.v1i1.248

Abstract

Bakery products such as bread, cake and cookies that currently exist in the market are generally made of wheat flour. Some individuals would suffer from allergy in consuming the consumption products that contain gluten which is found in wheat flour.The purpose of this activity is to produce bakery products such as bread, cake and cookies that are gluten free by using local tuber ingredients, i.e. cassava and sweet potatoes. The activity was started with processing cassavas, sweet potatotes, orange sweet potatoes to be powder which then was processed to be various types of bakery products. The variants of products that are marketed are as many as 31 types, consisting of 28 types of bakery products such as cakes and cookies, and 3 types of wet cake products. The types of bakery products that were sold was brownies, muffin, sponge cake, cookies and snacks with various variants such as steamed, baked, flavors addition of coffee, chocolate and mocha. The bakery products are gluten-free so that they are safe to be consumed by people who are allergic to gluten. The wet cake products that were marketed were risoles, pastels and doughnuts. However, this type of cake is still wheat flour substitute product as much as 20%. This activity may support the national food security program.
ANALISIS PENGARUH BIAYA PENDIDIKAN TERHADAP PENINGKATAN ASET DAN LABA PADA PERBANKAN SYARIAH DI INDONESIA Ridwansyah, Ridwansyah
Jurnal Ekonomi Vol 22, No 3 (2017): November 2017
Publisher : Fakultas Ekonom dan Bisnis, Universitas Tarumanagara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24912/je.v22i3.284

Abstract

One of the key to maintaining the quality of Syariah pious performance of BUSor UUS and BPRS is to develop and educate employees to maintain superior quality of human resources as well as ready and able to become the locomotive of syariah banking development in Indonesia. Training and development activities provide dividends to employees and companies, in the form of skills and skills that will further be a valuable asset for the company. This study aims to determine how much influence the cost of education to increase the number of assets and profits derived by Islamic banking in Indonesia both BUS, UUS and BPRS. The method used in this research is quantitative method by using secondary data in the form of report of educational cost level and increasing amount of assets and profit in BUS or UUS and BPRS in Indonesia during 2009-2013 period. For the data analysis process this research uses simple linear regression analysis, and hypothesis t test with educational cost in BUS or UUS and SRB as independent variable (X) and total assets and profit in BUS or UUS and BPRS as dependent variable (Y). Looking at the results of statistical tests using SPSS tools can be seen that the cost of education does not affect the amount and amount of assets and profits owned by BUS or UUS and BPRS in Indonesia.
Mengukur Tingkat Error Ketahanan Beton dengan Metode Klasifikasi Neural Network dan Support Vector Machine Purwaningsih, Esty; Ridwansyah, Ridwansyah
Jurnal Teknik Informatika Vol. 5 No. 1 (2019): JTI Periode Februari 2019
Publisher : LPPM STMIK ANTAR BANGSA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51998/jti.v5i1.295

Abstract

Abstract— Concrete has many benefits in building various infrastructure. So that the concrete is worth to be taken into account its durability. In previous studies we have accurately measured the error rate on concrete strength. In this study, we tried to compare the Neural Network method with the SVM method to measure the error rate in the strong concrete accuracy where each has an advantage in its performance. Where Neural network can solve the problem especially large data sample and has been able to prove in handling nonlinear problem. While the advantages of the Support Vector Machine (SVM) method is quite popular and good for classification use because it does not depend on the number of features and can overcome the problem of dimensions and can perform a rapid training process that is useful in learning techniques when facing the problem of indecision. The result of this research is known that Neural Network method got RMSE value is 7,650 and squared error value is 59.377, while SVM method got RMSE value is 10.905 and squared error value is 119.333. So it can be concluded that the error rate on concrete with Neural Network method is lower than the SVM method. Intisari— Beton memiliki banyak manfaat dalam membangun berbagai macam infrastruktur. Sehingga beton patut untuk diperhitungkan ketahanannya. Dalam penelitian-penelitian sebelumnya telah dilakukan pengukuran tingkat error pada kekuatan beton dengan akurat. Dalam penelitian ini, kami mencoba melakukan perbandingan antara metode Neural Network dengan metode SVM untuk mengukur tingkat kesalahan (error) dalam akurasi kuat beton dimana masing-masing memiliki keunggulan dalam kinerjanya. Dimana Neural network dapat menyelesaikan masalah khususnya sampel data besar dan telah mampu membuktikan dalam menangani masalah nonlinear. Sedangkan kelebihan dari metode Support Vector Machine (SVM) cukup populer dan baik untuk penggunaan klasifikasi karena tidak tergantung pada jumlah fitur dan bisa mengatasi masalah dimensi dan dapat melakukan proses training dengan cepat yang berguna dalam teknik learning ketika mengadapi masalah ketidaktegasan. Hasil penelitian ini diketahui bahwa metode Neural Network didapatkan nilai RMSE adalah 7.650 dan nilai squared error adalah 59.377, sedangkan metode SVM didapatkan nilai RMSE adalah 10.905 dan nilai squared error adalah 119.333. Sehingga dapat disimpulkan bahwa tingkat error pada beton dengan metode Neural Network lebih rendah dibanding dengan metode SVM. Kata Kunci — Beton, Klasifikasi, Neural Network, Support Vector Machine
Rancang Bangun Aplikasi Penggajian Menggunakan Framework CI : Studi Kasus : PD. Perkasa 3 Rahayu, Sri; Ridwansyah, Ridwansyah; Purnama, Jajang Jaya; Hamid, Abdul; Herliawan, Irwan
Jurnal Ilmu Komputer dan Bisnis Vol. 12 No. 2a (2021): Vol. 12 No. 2a Special Issue (2021)
Publisher : STMIK Dharmapala Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47927/jikb.v12i2a.203

Abstract

Kegiatan yang ada pada perusahaan dagang pada umumnya yaitu pembelian dan penjualan. Selain kedua kegiatan tersebut yang terkadang hampir dilupakan namun merupakan hal vital diantara adalah kegiatan penggajian karyawan. Masalah pemberian gaji merupakan hal yang penting karena mempunyai pengaruh yang sangat besar terhadap semangat kerja para karyawannya. PD. Perkasa 3 memiliki ratusan karyawan yang berbeda sistem perhitungan penggajiannya. Kerumitan pencatatan dan perhitungan penggajian dapat diatasi dengan rancang bangun sebuah aplikasi penggajian berbasis website yang dibangun menggunakan framework code igniter dengan bahasa pemrograman PHP dan database MySQL mampu memecahkan masalah mengenai rumitnya pencatatan dan perhitungan penggajian pada PD. Perkasa 3. Saat ini, PD. Perkasa 3 dapat melakukan penggajian dengan cepat dan tepat, pelaporan dan pengarsipan lebih rapi, aman, tidak mudah terbakar, basah dan hilang karena data tersimpan pada database rancang bangun ini dilakukan dengan berdasarkan metode SDLC (Systems Development Lifecycle) yang umum digunakan, yaitu Waterfall.
Mengukur Tingkat Error Ketahanan Beton dengan Metode Klasifikasi Neural Network dan Support Vector Machine Purwaningsih, Esty; Ridwansyah, Ridwansyah
Jurnal Teknik Informatika Vol 5 No 1 (2019): JTI Periode Februari 2019
Publisher : LPPM STMIK ANTAR BANGSA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51998/jti.v5i1.295

Abstract

Abstract— Concrete has many benefits in building various infrastructure. So that the concrete is worth to be taken into account its durability. In previous studies we have accurately measured the error rate on concrete strength. In this study, we tried to compare the Neural Network method with the SVM method to measure the error rate in the strong concrete accuracy where each has an advantage in its performance. Where Neural network can solve the problem especially large data sample and has been able to prove in handling nonlinear problem. While the advantages of the Support Vector Machine (SVM) method is quite popular and good for classification use because it does not depend on the number of features and can overcome the problem of dimensions and can perform a rapid training process that is useful in learning techniques when facing the problem of indecision. The result of this research is known that Neural Network method got RMSE value is 7,650 and squared error value is 59.377, while SVM method got RMSE value is 10.905 and squared error value is 119.333. So it can be concluded that the error rate on concrete with Neural Network method is lower than the SVM method. Intisari— Beton memiliki banyak manfaat dalam membangun berbagai macam infrastruktur. Sehingga beton patut untuk diperhitungkan ketahanannya. Dalam penelitian-penelitian sebelumnya telah dilakukan pengukuran tingkat error pada kekuatan beton dengan akurat. Dalam penelitian ini, kami mencoba melakukan perbandingan antara metode Neural Network dengan metode SVM untuk mengukur tingkat kesalahan (error) dalam akurasi kuat beton dimana masing-masing memiliki keunggulan dalam kinerjanya. Dimana Neural network dapat menyelesaikan masalah khususnya sampel data besar dan telah mampu membuktikan dalam menangani masalah nonlinear. Sedangkan kelebihan dari metode Support Vector Machine (SVM) cukup populer dan baik untuk penggunaan klasifikasi karena tidak tergantung pada jumlah fitur dan bisa mengatasi masalah dimensi dan dapat melakukan proses training dengan cepat yang berguna dalam teknik learning ketika mengadapi masalah ketidaktegasan. Hasil penelitian ini diketahui bahwa metode Neural Network didapatkan nilai RMSE adalah 7.650 dan nilai squared error adalah 59.377, sedangkan metode SVM didapatkan nilai RMSE adalah 10.905 dan nilai squared error adalah 119.333. Sehingga dapat disimpulkan bahwa tingkat error pada beton dengan metode Neural Network lebih rendah dibanding dengan metode SVM. Kata Kunci — Beton, Klasifikasi, Neural Network, Support Vector Machine
Optimizing Heart Failure Detection: A Comparison between Naive Bayes and Particle Swarm Optimization Hamid, Abdul; Ridwansyah, Ridwansyah
Paradigma - Jurnal Komputer dan Informatika Vol. 26 No. 1 (2024): March 2024 Period
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/p.v26i1.3284

Abstract

This research focuses on the importance of early detection of heart failure which is a serious global health problem. Given the variety of symptoms of heart failure, accurate early detection methods are needed with the aim of reducing the impact of this disease. This study uses the Naïve Bayes (NB) method which has been proven effective in classifying heart failure with significant variations in accuracy by integrating Particle Swarm Optimization (PSO) to improve the model. The evaluation model involves a confusion matrix including accuracy, precision, recall, and Area Under the Curve. The research results show that the integration of PSO in NB results in an increase in accuracy of 7.73%, an increase in precision of 6.42%, and an increase in recall of 1.93%. Although there was a small decrease in AUC. This research shows that the success of NB with PSO can help improve the performance of early detection of heart failure. This indicates the importance of this research in developing more accurate and effective detection methods for critical health conditions such as heart failure.
PELATIHAN PEMANFAATAN DIGITAL PARENTING CONTROL MENGGUNAKAN GOOGLE FAMILY LINK PADA IBU TAMAN KAMPUNG TANGGUH Kahfi, Ahmad Hafidzul; Nugraha, Fitra Septia; Ridwansyah, Ridwansyah; Nawawi, Hendri Mahmud
Jurnal AbdiMas Nusa Mandiri Vol 6 No 1 (2024): Periode April 2024
Publisher : LPPM Universitas Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/abdimas.v6i1.4788

Abstract

The use of digital technology is increasingly widespread in the modern era, which is changing the way parents educate their children. "Google Parenting" emerged as a term that reflects parents' efforts to face the challenges of parenting in the digital era. This concept emphasizes the importance of parents understanding the impact of technology on children's development as well as appropriate development strategies to use it wisely while maintaining balance in family life. This service activity aims to provide understanding to parents about using the Google Family Link application. The first stage includes theoretical explanations, direct practice using the application, and interactive discussions. The material is delivered through multimedia techniques using a laptop and the internet. This activity is not only informative but also involves active participants through modules, pretests, posttests and discussions. The results of the training for PKK RW 012 Taman Kampung Tangguh mothers showed an increase in their awareness and understanding of digital risks for children as well as their ability to control children's online activities. This helps reduce the risk of exposure to age-inappropriate content and improves communication between mother and child regarding digital safety.
Aplikasi Bimbingan Akademik berbasis Android di Jurusan Pendidikan Teknik Elektronika FT-UNM Ridwansyah, Ridwansyah
JURNAL TEKNOLOGI INFORMASI Vol 9, No 1 (2023): Jurnal Teknologi Informasi
Publisher : Universitas Respati Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52643/jti.v9i1.3072

Abstract

Bimbingan akademik di Jurusan Pendidikan Teknik Elektronika Fakultas Teknik Universitas Negeri Makassar masih dilakukan secara offline. Dimana, proses bimbingan akademik ini masih terdapat beberapa kendala yang menyebabkannya menjadi kurang efektif dan efisien. Untuk itu, pembuatan aplikasi bimbingan akademik berbasis android diperlukan untuk memudahkan prosesnya, karena dapat dilakukan kapan dan dimana saja. Pada penelitian ini digunakan metode waterfall dalam pembuatan aplikasinya. Berdasarkan hasil pengujian black box diperoleh hasil bahwa, aplikasi bimbingan akademik berbasis android ini dapat digunakan sesuai dengan fungsi-fungsi yang telah dirancang sebelumnya.
The Effect of Profitability, Debt Policy, Political Connections, Economic Crisis on Tax Aggressiveness Ridwansyah, Ridwansyah; Indayani
International Journal of Economics (IJEC) Vol. 3 No. 1 (2024): January-June
Publisher : PT Inovasi Pratama Internasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55299/ijec.v3i1.718

Abstract

The primary goal of this study is to analyze the impact of economic and political power, debt policy, and political influence on tax aggressiveness during times of economic uncertainty. In this study, we choose as examples health and pharmaceutical firms trading on the Indonesia Stock Exchange between the years 2018 and 2021. To test for the predicted difference between before and after the covid 19 epidemic, researchers utilized multiple regression and other tests (paired sample t-test) in SPSS version 23. This research backs up the notion that fiscal stability and profitability affect tax aggressiveness. There was no difference in the prevalence of tax evasion strategies either before or after the Covid 19 pandemic, and neither debt policies nor political relationships seemed to have any influence on tax aggression. Using research findings to inform decision making or policy implementation may boost a company's future success. In addition to building on earlier replication attempts, this work also puts to the test comparisons made before and during the COVID-19 epidemic, making it a significant piece of research.
Co-Authors Abdul Hamid Adris Ade Putra Ahmad Mujahid, Ahmad Alayzha, Vivi Nur Allimmah, Khoirunnisa Nurul Amelia, Merry Amrina, Dania Hellin Andharsaputri, Resti Lia ANGGUN RACHMAWATI, ANGGUN Anip Dwi Saputro, Anip Dwi Anus Wuryanto Ardini Saptaningsih Raksanagara, Ardini Saptaningsih Arisca, Nurmalita Asnawati Asnawati Ayasar, Prayogi Putra Elisa Julianti Era Yusraini Ersi Sisdianto Esty Purwaningsih Evendi, Rustam Faizah, Siti FARAH FAHMA Farhana, Nur Laila Fatma Lestari Fortuna, Salsabila Mutia Fortuna, Salsabilla Mutia Ganda Wijaya, Ganda Ganggang Canggi Arnanto Gianova, Erin Gustika Nurmalia Hafis Nurdin Haripuddin . Haris Herdiansyah, Haris Heni Noviarita Herfina, Inne Dwi Herlambang, Saifuddin Herliawan, Irwan Ifna, Nur Ifna Indah Ariyati Indayani Irfansyah, Nanda Irmawati Carolina Ispandi Ispandi, Ispandi Jajang Jaya Purnama Juwita, Safna Kahfi, Ahmad Hafidzul Khaswar Syamsu Labusab, Labusab Lawelendo, Lawelendo Marariza, Helma Mayzal, Tiondon Meilissa Ayu Pratiwi Moh. Muslih Monalysa, Lita Muhammad Iqbal Fasa Naffati, Abdel Kadir Nawawi, Hendri Mahmud Northa Idaman Nugraha, Fitra Septia Nurhasmi Nurhasmi Nusasenjaya, Radite Okta Supriyaningsih Oky Kurniawan Pariabti Palloan Pratama, Reza Hardian Purnama Soiswaty, Dwi Purwadhi Purwadhi Purwoko, Reza Yuridian Ramadhani, Mutiara Razimi, Mohd Syahril Ahmad Rian Andriani, Rian Rima Melati RIZQINA, AULIA LAILY Ruray, Titiek Arafiani Sabril, Aulia Samad, Putri IS Samman, Muhammad Sanusi, Dirga Kaso Sari, Defya Sari, Yetri Martika Sartika SRI RAHAYU sulis, sulistiawaty Supriadi Supriadi Suprianingsih, Okta Susanto, Is Terip Karo-Karo Theresia Santi, Theresia Titi Candra Sunarti Tubarad, Chara Pratami Tidespania Tyas, Prayoga Ning Wahrini, Retyana Weny Rosilawati Yahya, Haidar Silmi Yunita Sari