Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : JOURNAL OF APPLIED INFORMATICS AND COMPUTING

Penerapan Algoritma Support Vector Machine (SVM) untuk Klasifikasi Berita Hoax Covid-19 Isnin Apriyatin Ropikoh; Rijal Abdulhakim; Ultach Enri; Nina Sulistiyowati
Journal of Applied Informatics and Computing Vol 5 No 1 (2021): July 2021
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v5i1.3167

Abstract

Hoax merupakan informasi yang dibuat oleh orang tidak bertanggung jawab dengan tujuan membuat orang lain mempercayai sesuatu yang tidak benar. Berita hoax yang paling mudah beredar adalah hoax tentang kesehatan. Di Indonesia sendiri semenjak diberitakan masuknya virus Covid-19, berita hoax tentang hal itu terus meningkat berdasarkan data yang dirilis oleh Kominfo periode Januari-Agustus 2020. Agar terhindar dari berita hoax ialah dengan lebih teliti membaca judul berita pada situs yang terpercaya seperti Kompas. Karena itu penelitian ini akan mengembangkan dan menganalisis model klasifikasi berita hoax Covid-19 dengan menerapkan algoritma Support Vector Machine (SVM) dengan metodologi Knowledge Discovery in Databases (KDD). Studi kasus penelitian ini dibagi dalam 2 kategori yaitu berita hoax yang didapat dari situs Trunbackhoax & Hoax buster sedangkan berita bukan hoax diambil dari situs berita Kompas. Hasil penelitian menyatakan bahwa Algoritma Support Vector Machine (SVM) dengan kernel linear memiliki hasil prediksi yang bagus pada skenario 3 (80:20) karena model sanggup dalam mengklasifikasikan berita hoax dan bukan hoax Covid-19. Akurasi yang didapat pada skenario 3 juga memiliki nilai akurasi tertinggi sebesar 97,06%. Sedangkan pada kernel RBF memiliki akurasi terendah pada skenario 4 (90:10) yaitu 90.46% dan model kurang bagus dalam mengklasifikasikan berita hoax maupun bukan hoax Covid-19.
Pencarian Pola Pemakaian Obat Menggunakan Algoritma FP-Growth Salsabila, Nikita; Sulistiyowati, Nina; Padilah, Tesa Nur
Journal of Applied Informatics and Computing Vol. 6 No. 2 (2022): December 2022
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v6i2.4187

Abstract

Obat'merupakan sebuah bahan yang digunakan'untuk mendiagnosis sebuah penyakit yang dapat digunakan untuk pencegahan atau pengobatan penyakit pada manusia atau hewan. Dalam penggunaannya, proses perencanaan stok obat di klinik atau rumah sakit merupakan hal penting yang harus diperhatikan karena apabila stok obat tidak sesuai maka akan menimbulkan masalah dalam ketersediaan stok obat. Pada penelitian ini terjadi permasalahan pada stok obat pada sebuah klinik yang berlokasi di Kabupaten Brebes yang mana terjadi kelebihan stok obat yang mengakibatkan jumlah data stok obat tidak sesuai dengan stok obat yang tersedia. Oleh sebab itu proses data mining dengan bantuan metodologi Knowledge Discovery in Databases (KDD) digunakan untuk membantu dalam pengelolaan stok obat pada klinik tersebut. Adapun tahapan KDD diantaranya, data selection, data pre-processing, data transformation, data mining, dan interpretation/evaluation. Pengujian dilakukan dengan menggunakan aplikasi Rapid Miner. Penerapan metode asosiasi pada data mining mampu menghasilkan suatu aturan asosiasi baru dari masing"“masing item. Berdasarkan analisis yang dilakukan dengan algoritme FP-Growth, ditetapkan nilai support sebesar 75 frekuensi atau 23% dan nilai confidence sebesar 75%. Hasil penelitian menghasilkan 6 aturan asosiasi dengan kombinasi item terbesar hingga 3 item. Evaluasi pengujian yang didapat dari nilai Lift Ratio mendapat nilai rata-rata sebesar 1.267.
Analisis Sentimen Aplikasi WETV di Google Play Store Menggunakan Algoritma Support Vector Machine Kulsum, Ummi; Jajuli, Mohamad; Sulistiyowati, Nina
Journal of Applied Informatics and Computing Vol. 6 No. 2 (2022): December 2022
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v6i2.4802

Abstract

WeTV is an online streaming application widely used by Indonesia's people as an entertainment medium while at home. This application has been downloaded more than 50 million times on the official Google Play Store website. The number of users who use it makes the reviews of this application abundant as well. Large numbers of reviews are very difficult to read manually, sentiment analysis is needed to classify reviews into positive and negative classes. This study uses a support vector machine algorithm with a linear kernel to classify review data from the WeTV application. KDD was used as a method to complete this research. In the analysis process to obtain information, 4 scenarios were carried out, with the division in the first scenario consisting of 60% training data and 40% test data, the second scenario consisting of 70% training data and 30% test data, the third scenario 80% training data and 20% test data, and the last scenario 90% training data and 10% test data. The highest test results of 85% were obtained from the second scenario with the distribution of training data of 70% and 30% of test data, the third with the distribution of training data of 80% and 20% of test data, and the fourth with the distribution of training data of 90% and test 10% data. The confusion matrix is used as an evaluation of the model that has been made, the results show an accuracy in the first scenario of 83%, with a precision value of 83%, recall 89%, and an f1-score of 86%. The accuracy in the second scenario is 85%, precision is 86%, recall is 89%, f1-score is 87%, accuracy in the third scenario is 85%, precision is 85%, recall is 90%, and f1-score is 88%. And the fourth scenario gets an accuracy of 85%, precision 86%, recall 90%, and f1-score 90%.