Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Scientific Journal of Informatics

Automatic Segmentation of Abdominal Aortic Aneurism (AAA) By Using Active Contour Models Kosasih, Rifki
Scientific Journal of Informatics Vol 7, No 1 (2020): May 2020
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v7i1.23625

Abstract

Abdominal aortic aneurysm (AAA) is a disease that is caused by dilation of the aortic wall. Dilation of the aortic wall will affect the size of the diameter of lumen and the aorta. In this study we use T1 and T2 images on 4 patients with AAA which generated from MR Imaging to calculate the diameter of the abdominal aortic aneurysm (AAA). To calculate the diameter of lumen and the aorta, the first step is image registration using Laplacian eigenmap method. After that we propose an automatic segmentation method on region of the aorta by using active contour models to get the contour of lumen and the aorta. The last step,  we calculate the diameter of lumen and the aorta by using contour of lumen and the aorta. In our experiment, active contour model is very good method for segmentation AAA. In the result, our proposed model give the accuracy rate of lumen is 96.41% and accuracy rate of aorta is 95.22%. 
Automatic Segmentation of Abdominal Aortic Aneurism (AAA) By Using Active Contour Models Kosasih, Rifki
Scientific Journal of Informatics Vol 7, No 1 (2020): May 2020
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v7i1.23625

Abstract

Abdominal aortic aneurysm (AAA) is a disease that is caused by dilation of the aortic wall. Dilation of the aortic wall will affect the size of the diameter of lumen and the aorta. In this study we use T1 and T2 images on 4 patients with AAA which generated from MR Imaging to calculate the diameter of the abdominal aortic aneurysm (AAA). To calculate the diameter of lumen and the aorta, the first step is image registration using Laplacian eigenmap method. After that we propose an automatic segmentation method on region of the aorta by using active contour models to get the contour of lumen and the aorta. The last step,  we calculate the diameter of lumen and the aorta by using contour of lumen and the aorta. In our experiment, active contour model is very good method for segmentation AAA. In the result, our proposed model give the accuracy rate of lumen is 96.41% and accuracy rate of aorta is 95.22%. 
Travel Time Estimation Using Support Vector Regression on Model with 8 Features Kosasih, Rifki; Mardhiyah, Iffatul
Scientific Journal of Informatics Vol 9, No 2 (2022): November 2022
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v9i2.37215

Abstract

Purpose: In travelling, we need to predict travel time so that itinerary is as expected. This paper proposes Support Vector Regression (SVR) to build a prediction model. In this case, we will estimate travel time in the Bali area. We propose to use a regression model with 8 features, i.e., time, weather, route, wind speed, day, precipitation, temperature and humidity information.Methods: In this study, we collect real-time data from Global Positioning System (GPS) and weather applications. We divide our data into two types: training dataset consisting of 177 data and testing dataset comprising 51 data. The Support Vector Regression (SVR) method is used in the training stage to build a model representing data. To validate the model, error measurements were carried out by calculating the values of R2, Accuracy, MAE (Mean Absolute Error), RMSE (Root Mean Square Error) and Accuracy.Result: From the research results, the model obtained is the SVR model with parameters γ=0.125, ε=0.1 and C = 1000, which has a value of R2= 0.9860528612283006. Later, we predict travel times on testing data using the SVR model that has been obtained. Based on the result of the research, our model has a 0.8008 MAE (Mean Absolute Error), 1.2817 RMSE (Root Mean Square Error) and 95.3369% Accuracy.Novelty: In this study, we use 8 features to estimate travel time in the Bali area. Furthermore, we will compare the KNN regression method (previous studies) with Support Vector Regression (SVR) (proposed method) on a model with 8 features to estimate travel time.