Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Comparative Study of Classification of Eye Disease Types Using DenseNet and EfficientNetB3 Jatmoko, Cahaya; Lestiawan, Heru; Agustina, Feri; Erawan, Lalang
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 9, No. 3, August 2024
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v9i3.1931

Abstract

The purpose of this research is to build a classification model that can perform the eye disease identification process so that the diagnosis of eye disease can be known and medical action can be taken as early as possible. This research used a dataset which has a total of 4217 eye image data and had 4 main classes namely cataract, diabetic retinopathy, glaucoma, and normal. With the data distribution of 1038 cataract images, 1098 diabetic retinopathy images, 1007 glaucoma images, and 1074 normal images, which of this data will be divided with a data percentage scheme of 50:10:40, 60:10:30, and 70:10:20, to see the results of which dataset division can produce optimal accuracy. In this study, the classification process will use 2 CNN transfer learning architectures, namely DenseNet, and efficientnetb3, which are both trained using the ImagiNet dataset. The results obtained after completing the testing process on the model built using the DenseNet architecture get optimal accuracy when using data division as much as 60:10:30, which is 78.59% while using the efficientnetb3 architecture optimal accuracy results when using the data division of 70:10:20, which is 95.66%. In research on the classification that had previously been done, it is very rare to find a classification process for eye disease types, therefore, in this study, the classification process will be carried out and provide an overview of the eye disease classification process with the CNN transfer learning method with more optimal accuracy results.
Optimized Visualization of Digital Image Steganography using Least Significant Bits and AES for Secret Key Encryption Jatmoko, Cahaya; Sinaga, Daurat; Lestiawan, Heru; Astuti, Erna Zuni; Sari, Christy Atika; Shidik, Guruh Fajar; Andono, Pulung Nurtantio; Yaacob, Noorayisahbe Mohd
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 10, No. 3, August 2025
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v10i3.2252

Abstract

Data hiding is a technique used to embed secret information into a cover medium, such as an image, audio, or video, with minimal distortion, ensuring that the hidden data remains imperceptible to an observer. The key challenge lies in embedding secret information securely while maintaining the original quality of the host medium. In image-based data hiding, this often means ensuring the hidden data cannot be easily detected or extracted while still preserving the visual integrity of the host image. To overcome this, we propose a combination of AES (Advanced Encryption Standard) encryption and Least Significant Bit (LSB) steganography. AES encryption is used to protect the secret images, while the LSB technique is applied to embed the encrypted images into the host images, ensuring secure data transfer. The dataset includes grayscale 256x256 images, specifically "aerial.jpg," "airplane.jpg," and "boat.jpg" as host images, and "Secret1," "Secret2," and "Secret3" as the encrypted secret images. Evaluation metrics such as Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Unified Average Changing Intensity (UACI), and Number of Pixels Changed Rate (NPCR) were used to assess both the image quality and security of the stego images. The results showed low MSE (0.0012 to 0.0013), high PSNR (58 dB), and consistent UACI and NPCR values, confirming both the preservation of image quality and the effectiveness of encryption for securing the secret data.
XGBoost-Powered Ransomware Detection: A Gradient-Based Machine Learning Approach for Robust Performance Ghozi, Wildanil; Lestiawan, Heru; Sani, Ramadhan Rakhmat; Hussein, Jassim Nadheer; Rafrastara, Fauzi Adi
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 10, No. 4, November 2025
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v10i4.2405

Abstract

Ransomware remains a rapidly evolving cyber threat, causing substantial financial and operational disruptions globally. Traditional signature-based detection systems are ineffective against sophisticated, zero-day attacks due to their static nature. Consequently, machine learning-based approaches offer a more effective and adaptive alternative. This study proposes an approach utilizing XGBoost for highly effective ransomware detection. We conducted a rigorous comparative analysis of prominent ensemble learning algorithms—XGBoost, Random Forest, Gradient Boosting, and AdaBoost—on the RISS Ransomware Dataset, comprising 1,524 instances. Our experimental results unequivocally demonstrate XGBoost as the superior ensemble model, achieving an impressive 97.60% accuracy and F1-Score. This performance surpassed Gradient Boosting (97.20%), Random Forest (96.94%), and AdaBoost (96.50%). Furthermore, this study benchmarked XGBoost against established state-of-the-art (SOTA) methods, including Support Vector Machine (SVM) and the SA-CNN-IS deep learning approach. The comprehensive results underscore the core contribution of this study: by applying XGBoost with a carefully structured machine learning pipeline, our approach consistently outperforms two state-of-the-art methods (SVM and SA-CNN-IS) as well as other ensemble algorithms. This highlights the critical role of methodological precision in maximizing detection performance against evolving ransomware threats.