Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Peringkasan Tweet Berdasarkan Trending Topic Twitter Dengan Pembobotan TF-IDF dan Single Linkage Angglomerative Hierarchical Clustering Annisa, Annisa; Munarko, Yuda; Azhar, Yufis
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol 1, No 1, May-2016
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (539.422 KB) | DOI: 10.22219/kinetik.v1i1.7

Abstract

Fitur yang paling sering digunakan pada Twitter ialah Trending Topic. Trending Topic merupakan fitur yang menampilkan beberapa hashtag berisi topik yang sedang trend saat ini. Jika pengguna ingin mengetahui informasi mengenai suatu trending topic, pengguna bisa mengklik salah satu hashtag dan barulah muncul beberapa tweet terkait dengan hashtag tersebut. Agar menghemat waktu pengguna Twitter dalam membaca suatu trending topic tanpa perlu membaca beberapa tweet terlebih dahulu, maka dilakukanlah analisa dengan tujuan membuat text summarization untuk trending topic pada Twitter menggunakan algoritma TF-IDF dan Single Linkage Agglomerative Hierarchical Clustering. Penelitian ini menggunakan 100 trending topic untuk data tes pada sistem dan setiap trending topic terdiri atas 50 tweet berbahasa indonesia, sedangkan untuk pengujian digunakan 30 data trending topic diambil secara acak (data mewakili trending topic dengan sub tema minimal 2 dan maksimal 9 dari 100 data tes pada sistem). Dari 30 data pengujian, 1 data menghasilkan semua ringkasan sama persis dengan ahli,  dan 29 data menghasilkan 1-4  ringkasan sama persis dengan ahli (terdiri atas 2-9 ringkasan untuk setiap trending topic).
Image Retrieval Based on Texton Frequency-Inverse Image Frequency Azhar, Yufis; Minarno, Agus Eko; Munarko, Yuda; Ibrahim, Zaidah
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 5, No. 2, May 2020
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (550.257 KB) | DOI: 10.22219/kinetik.v5i2.1026

Abstract

In image retrieval, the user hopes to find the desired image by entering another image as a query. In this paper, the approach used to find similarities between images is feature weighting, where between one feature with another feature has a different weight. Likewise, the same features in different images may have different weights. This approach is similar to the term weighting model that usually implemented in document retrieval, where the system will search for keywords from each document and then give different weights to each keyword. In this research, the method of weighting the TF-IIF (Texton Frequency-Inverse Image Frequency) method proposed, this method will extract critical features in an image based on the frequency of the appearance of texton in an image, and the appearance of the texton in another image. That is, the more often a texton appears in an image, and the less texton appears in another image, the higher the weight. The results obtained indicate that the proposed method can increase the value of precision by 7% compared to the previous method.
Convolutional Neural Network with Hyperparameter Tuning for Brain Tumor Classification Minarno, Agus Eko; Hazmi Cokro Mandiri, Mochammad; Munarko, Yuda; Hariyady, Hariyady
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 6, No. 2, May 2021
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v6i2.1219

Abstract

Brain tumor has been acknowledged as the most dangerous disease through all its circles. Early identification of tumor disease is considered pivotal to identify the spread of brain tumors in administering the appropriate treatment. This study proposes a Convolutional Neural Network method to detect brain tumor on MRI images. The 3264 datasets were undertaken in this study with detailed images of Glioma tumor (926 images), Meningioma tumors (937 images), pituitary tumors (901 images), and other with no-tumors (500 images). The application of CNN method combined with Hyperparameter Tuning is proposed to achieve optimal results in classifying the brain tumor types. Hyperparameter Tuning acts as a navigator to achieve the best parameters in the proposed CNN model. In this study, the model testing was conducted with three different scenarios. The result of brain tumor classification depicts an accuracy of 96% in the third model testing scenario.
Peringkasan Tweet Berdasarkan Trending Topic Twitter Dengan Pembobotan TF-IDF dan Single Linkage Angglomerative Hierarchical Clustering Annisa Annisa; Yuda Munarko; Yufis Azhar
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol 1, No 1, May-2016
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (539.422 KB) | DOI: 10.22219/kinetik.v1i1.7

Abstract

Fitur yang paling sering digunakan pada Twitter ialah Trending Topic. Trending Topic merupakan fitur yang menampilkan beberapa hashtag berisi topik yang sedang trend saat ini. Jika pengguna ingin mengetahui informasi mengenai suatu trending topic, pengguna bisa mengklik salah satu hashtag dan barulah muncul beberapa tweet terkait dengan hashtag tersebut. Agar menghemat waktu pengguna Twitter dalam membaca suatu trending topic tanpa perlu membaca beberapa tweet terlebih dahulu, maka dilakukanlah analisa dengan tujuan membuat text summarization untuk trending topic pada Twitter menggunakan algoritma TF-IDF dan Single Linkage Agglomerative Hierarchical Clustering. Penelitian ini menggunakan 100 trending topic untuk data tes pada sistem dan setiap trending topic terdiri atas 50 tweet berbahasa indonesia, sedangkan untuk pengujian digunakan 30 data trending topic diambil secara acak (data mewakili trending topic dengan sub tema minimal 2 dan maksimal 9 dari 100 data tes pada sistem). Dari 30 data pengujian, 1 data menghasilkan semua ringkasan sama persis dengan ahli,  dan 29 data menghasilkan 1-4  ringkasan sama persis dengan ahli (terdiri atas 2-9 ringkasan untuk setiap trending topic).
POS Tagger Tweet Bahasa Indonesia Yuda Munarko; yufis azhar; Maulina Balqis; Susi Ekawati
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol 2, No 1, February-2017
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v2i1.169

Abstract

Pada penelitian ini dilakukan investigasi POS Tagger dengan pendekatan Cyclic Dependency Network untuk data tweet dalam Bahasa Indonesia. Untuk koleksi tweet, digunakan tiga koleksi data, yakni tweet dengan gaya bahasa formal, informal dan gabungan. Sumber koleksi tweet formal adalah tweet dari akun berita, sedangkan koleksi tweet informal didapatkan dari akun umum.  Adapun jenis tag yang digunakan berjumlah 41, dimana 35 adalah standar tag Bahasa Indonesia dan 6 adalah tambahan tag untuk twitter. Hasilnya adalah untuk koleksi data formal ketepatan deteksi mencapai 95,42%. Sedangkan untuk koleksi data informal dan gabungan ketepatannya mencapai 92,42% dan 90,69% secara berurutan. Kami juga mendapatkan hasil bahwa untuk tag yang sering muncul cenderung untuk memiliki nilai ketepatan yang tinggi juga, sedangkan tag yang kemunculannya lebih sedikit menyebabkan penurunan rata-rata ketepat secara keseluruhan.