Claim Missing Document
Check
Articles

Found 23 Documents
Search

Analysis Redox Reaction on Zinc-Coating Thickness Test in Metal Processing Industry of Small and Medium Enterprises Gatot Triyanto; Ricky R. Saputro; Chepi Reynaldir; Khoirudin Khoirudin; Sukarman Sukarman
Jurnal Akademika Kimia Vol. 11 No. 1 (2022)
Publisher : Universitas Tadulako

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22487/j24775185.2022.v11.i1.pp19-25

Abstract

This study discusses the implementation of redox reactions on the thickness test of the galvanized (zinc-coated) layer using the JIS-H-0401 standard to help Small and Medium Enterprises (SMEs) industries. Some of the finished products go through the galvanizing process in the metal processing industry. Quality constraints, especially related to the thickness of the galvanic (zinc-coated) layer, have become an object that is less controlled because of the limitations of the test equipment used. This research uses an experimental method applied to one of its products: a flat washer with SPCC material and a thickness of about 2.20 mm. SPCC - SD material is classified as low carbon steel based on its carbon content. 5-unit flat washers were identified with sample codes A, B, C, D, and E. Flat washers have an internal diameter of 22.65 - 22.7 mm. In comparison, the outer diameter is between 43.75 - 43.80. The redox reaction process uses HCl (hydrochloric acid) with a concentration of 1 M, which is diluted with water (H2O). The zinc thickness test results show that the flat washer has an average thickness of 10.52 microns with a minimum and maximum thickness variation of 10.66 -10.72 microns.
Determining The Crystallite Size of TiO2/EG-Water XRD Data Using the Scherrer Equation Muhamad Taufik Ulhakim; Sukarman Sukarman; Khoirudin Khoirudin; Nazar Fazrin; Tomas Irfani; Afif Hakim
INDONESIAN JOURNAL OF APPLIED PHYSICS Vol 14, No 1 (2024): April
Publisher : Department of Physics, Sebelas Maret University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.13057/ijap.v14i1.79195

Abstract

X-ray diffraction (XRD) data and the Scherrer equation were utilized to analyze the crystallite Size of titanium dioxide (TiO2) in a solution of ethylene glycol (EG) and distilled water. The XRD analysis was conducted using a Rigaku Miniflex 600 instrument with an X-ray wavelength of approximately 0.15046 nm. The examination yielded the full-width half maximum (FWHM), which was subsequently examined using the Scherrer equation. This experiment employed TiO2 with a purity level of 99.8% and a crystal Size of 30 nm. The analysis revealed that the average crystallite Size of TiO2 in the sample is 19.45 nm, with the highest measurement at about 30.38 nm. The Spearman correlation equation was employed to validate the outcomes. The Spearman's correlation coefficient between the FWHM variable and the crystallite Size of TiO2 nanoparticles is -0.958. These findings shed light on the crystal structure of TiO2 under these conditions. These findings lend support to the use of TiO2 in a variety of nanotechnology applications. However, more research is needed to understand fully how crystallite-Size TiO2 nanoparticles work in different settings and to find the best ways to prepare samples, including understanding the specific phase and how it affects the stability of fluids. This research contributes significantly to the understanding of the properties of TiO2 in a solution of distilled water and EG, as well as to the characterization of nanomaterials, with particular emphasis on issue 9 of the SDGS Goal concerning industry, innovation, and infrastructure.
Enhancement Material Removal Rate Optimization of Sinker EDM Process Parameters Using a Rectangular Graphite Electrode Sukarman; Sumanto; Acim Maulana; Dodi Mulyadi; Khoirudin; Siswanto; Ade Suhara; Safril
Jurnal Optimasi Sistem Industri Vol. 21 No. 2 (2022): Published in October 2022
Publisher : The Industrial Engineering Department of Engineering Faculty at Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/josi.v21.n2.p87-96.2022

Abstract

This article discusses the optimization of sinker electrical discharge machining (sinker EDM) processes using SPHC material that has been hardened. The sinker EDM method is widely employed, for example, in the production of moulds, dies, and automotive and aeronautical components. There is neither contact nor a cutting force between the electrode and the work material in sinker EDM. The disadvantage of the sinker EDM is its low material removal rate. This work aims to optimize the material removal rate (MRR) using graphene electrodes in a rectangular configuration. The SPHC material was selected to determine the optimum MRR model of the sinker EDM input parameter. The Taguchi experimental design was chosen. The Taguchi technique used three input parameters and three experimental levels. Pulse current (I), spark on time (Ton), and gap voltage were among the input parameters (Vg). The graphite rectangle was chosen as an electrode material. The input parameter effect was evaluated by S/N ratio analysis. The result showed that pulse current has the most significant impact on material removal rate in the initial study, followed by spark on time and gap voltage. All input parameters are directly proportional to the MRR. For optimal material removal rate, the third level of pulse current, spark on time, and gap voltage must be maintained. In addition, the proposed Taguchi optimization model could be applied to an existing workshop floor as a simple and practical electronic tool for predicting wear and future research.