Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : CogITo Smart Journal

Analisis Gambar Sel Darah Berbasis Convolution Neural Network Untuk Mendiagnosis Penyakit Demam Berdarah Wiga Maulana Baihaqi; Chyntia Raras Ajeng Widiawati; Dila Putri Sabil; Anjar Wati
CogITo Smart Journal Vol 7, No 1 (2021): Cogito Smart Journal
Publisher : Fakultas Ilmu Komputer, Universitas Klabat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31154/cogito.v7i1.308.148-159

Abstract

Demam berdarah masih menjadi masalah serius. Banyaknya kasus Demam Berdarah di dunia disebabkan oleh iklim yang tidak stabil dan curah hujan yang tinggi pada musim penghujan, yang berpotensi menjadi sarana perkembangbiakan nyamuk Aides Egypt. Tes darah merupakan alat diagnostik utama untuk mendeteksi beberapa penyakit seperti leukemia, demam berdarah, talasemia dan malaria. Perubahan jumlah sel darah ini dengan jelas mengidentifikasi penyebab penyakit. Penelitian ini berfokus pada sel darah merah dan sel darah putih dalam membantu dokter mendiagnosis pasien dengan virus demam berdarah, dimana Tes Hematologi dalam mendiagnosis demam berdarah memang memperhatikan persentase tingkat jumlah sel darah merah dan sel darah putih. Dalam Tes Hematologi, dilakukan penghitungan Hematokrit dan Hitung Darah Lengkap, yang merupakan metode umum untuk mendiagnosis infeksi dengue. Ukuran trombosit yang kecil membuat teknik ini tidak digunakan dalam penelitian ini. Penelitian ini mengusulkan algoritma Convolutional Neural Network untuk mengenali fitur set data sel darah dan mendeteksi demam berdarah berdasarkan masukan sel darah. Hasil penelitian yang dihasilkan menghasilkan metode dan sistem yang dapat mendiagnosis pasien DBD dengan memanfaatkan citra hapusan sel darah, sehingga dapat mempercepat proses diagnosis dan menghemat biaya.Kata kunci—demam berdarah, klasifikasi, Convolutional Neural Network
Analisis Performa Algoritma Klasifikasi pada Sentimen Ulasan Pengguna terhadap Aplikasi Muamalat DIN: Analisis Performa Algoritma Klasifikasi pada Sentimen Ulasan Pengguna terhadap Aplikasi Muamalat DIN Wiga Maulana Baihaqi; Ika Romadoni Yunita; Aulia Shafira Tri Damayanti; Luthfi Akhaerunnisa
CogITo Smart Journal Vol. 9 No. 2 (2023): Cogito Smart Journal
Publisher : Fakultas Ilmu Komputer, Universitas Klabat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31154/cogito.v9i2.511.241-251

Abstract

Banking applications have become an integral part of modern society. One such application is Muamalat DIN, launched by Bank Muamalat Indonesia with the aim of facilitating customers in conducting various transactions and activities. User reviews of this application vary widely, ranging from positive to negative comments. The purpose of this study is to evaluate user attitude on reviews of Bank Muamalat Indonesia's digital banking product, the Muamalat DIN application. This research offers insights into the efficacy of the SMOTE balancing technique compared to undersampling by utilizing a methodology that includes data collection via scrapping techniques, data preprocessing, and the application of Multi Layer Perceptron (MLP), XGBoost, and LightGBM classification algorithms. The results show that SMOTE-paired XGBoost works better for sentiment categorization. The study's conclusion emphasizes the significance of choosing the right data balancing method to increase sentiment analysis's accuracy in Islamic banking applications, which can be used as a foundation for strategies aimed at enhancing customer service and making decisions.