Nasuka Nasuka
Balai Besar Teknologi Pencegahan Pencemaran Industri

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Low Energy Bacteria Preservation of Extremely Halophilic Archaea Haloferax Lucentense and Haloferax Chudinovii Immobilized using Natural Zeolite Rizal Awaludin Malik; Nilawati Nilawati; Novarina Irnaning Handayani; Rame Rame; Silvy Djayanti; Ningsih Ika Pratiwi; Nanik Indah Setianingsih; Nasuka Nasuka
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 10 No. 2 (2019)
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2019.v10.no2.p16-28

Abstract

The methods of microbial cells preservation were already known by liquid drying, freeze-drying, and freezing. Those methods could preserve bacteria cells in a long period of time but its survivability was relatively low and used relatively high energy during preservation. Immobilization was known as entrapping, attaching or encapsulating bacterial cells in a suitable matrix. This research was conducted to know the suitability of zeolite as immobilization carrier and also as preservation matrix of two halophilic archaea Haloferax chudinovii and Haloferax lucentense. Variable of this research was the type of the carrier which was raw zeolite, 110oC and 300oC heat-activated zeolite carrier, parameters measured in this study was physical and chemical of zeolite such as chemical content, Si/Al ratio, surface area and pore volume, and biochemical assay, bacterial cells numbers after immobilization and bacterial cells after preservation as bacterial response to the immobilization and preservation. Heat activation was significantly affecting the chemical composition, carrier surface area, and pore volume. Highest surface area, pore volume, and Si/Al ratio were obtained in 110oC pretreated zeolite followed by 300oC pretreated zeolite. The bacterial cells obtained after immobilization process was 1,8x107 cfu/g, 3,0 x 107 cfu/g, and 2,1x107 for raw zeolite, 110oC pretreated zeolite and 300oC zeolite respectively. After 4 months preservation, the slight reduction of the bacterial cells was observed. Immobilization halophilic archaeae using zeolite as carrier was proven as low cost and effective preservation method due to relatively simple process and unspecific preservation temperature requirements.
Wet Scrubber Performance Optimization Application Assisted with Electrochemical-Based Ammonia Sensors Ikha Rasti Julia Sari; Januar Arif Fatkhurrahman; Bekti Marlena; Nani Harihastuti; Farida Crisnaningtyas; Yose Andriani; Nasuka Nasuka
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 10 No. 2 (2019)
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2019.v10.no2.p36-42

Abstract

Crumb rubber is one of Indonesia’s agroindustry export commodities. This industry faces environmental problems due to their wastes, both liquid and air. The source of air pollution is commonly from drying process that emitted odor from its evaporation and heating phenomena. Industry uses wet scrubber technology as air pollution control from emitted odor from drying process. Preliminary identification in noncontrolled wet scrubber shown that wet scrubber efficiency around 47%. Low efficiency wet scrubbing process causes rain drop of water vapor around drying process. This research used electrochemical based sensor MICS 5524 as ammonia monitoring instrument, assisted with arduino as microcontroller to regulate water discharge through valve controlling scrubbing process. This electrochemical based sensor reads ammonia based on voltage reads by Arduino microcontroller. Ammonia reading then control scrubbing process by adjusting valve opening for spray water distribution. Wet scrubber efficiency increases to 66,96% due to water scrubbing control, also can save water utilization as high as 61,90%, followed by absence of rain drop contains ammonia around drying process area.