Heart disease remains one of the primary causes of death worldwide, largely due to sedentary lifestyles and the lack of continuous health monitoring. Many existing wearable health systems fail to provide real-time alerts or offer seamless integration between hardware, cloud platforms, and user interfaces. This study proposes a fully integrated Internet of Things (IoT)-based wearable device for real-time monitoring of heart rate and body temperature. The system utilizes an ESP32 microcontroller combined with MAX30102 and DS18B20 sensors and transmits physiological data via Wi-Fi to the Adafruit IO cloud platform using the MQTT protocol. A custom Android application developed using a low-code environment provides real-time visualization and alert notifications when user-defined thresholds are exceeded. Comparative testing against standard medical devices showed an average error of 1.99% for heart rate and 2.32% for body temperature, demonstrating reliable performance for non-clinical, preventive health monitoring. Unlike previous works, this system offers end-to-end integration, enabling real-time feedback, continuous data access, and user-friendly interaction. Future developments will focus on improving sensor calibration, enhancing ergonomic design, and incorporating advanced features such as historical data tracking and AI-based health alerts.