Claim Missing Document
Check
Articles

Found 12 Documents
Search
Journal : Building of Informatics, Technology and Science

Sentiment Analysis of Wondr by BNI App Reviews on Play Store using the CNN-LSTM Method Putra, Ihsanudin Pradana; Sibaroni, Yuliant; Prasetiyowati, Sri Suryani
Building of Informatics, Technology and Science (BITS) Vol 7 No 1 (2025): June (2025)
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v7i1.7477

Abstract

As the use of digital applications in banking services increases, user opinions about these applications become an important source of data to study Wondr by BNI, which receives many user reviews, is one of the applications studied in this research. This research aims to build an accurate sentiment classification model and compare the effectiveness of two word representation methods, Word2Vec and FastText, to automatically classify sentiment into two classes, positive and negative, from unstructured review text using informal language. The data was processed through pre-processing, labeling, and processing stages using a hybrid CNN-LSTM model with 20,000 reviews available on the Google Play Store. The training process is carried out using 5-fold cross-validation and hyperparameter optimization using the random search method. The results show that the model with FastText has an accuracy of 86.38%, precision of 86.82%, recall of 86.46%, and F1-score of 86.46%. In contrast, the model with Word2Vec has an accuracy of 85.90%, precision of 86.38%, recall of 85.80%, and F1-score of 85.87%. These results show that FastText is better in accuracy and performance consistency compared to Word2Vec. This research provides a better understanding of how word representation methods affect sentiment analysis in app reviews and is expected to be a reference for future development of similar models.
Multi-Aspect Sentiment Analysis of Movie Reviews Using BiLSTM on Platform X Data Sinaga, Astria M P; Sibaroni, Yuliant; Prasetyowati, Sri Suryani
Building of Informatics, Technology and Science (BITS) Vol 7 No 1 (2025): June (2025)
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v7i1.7509

Abstract

The film industry generates scores of movie reviews annually, reflecting viewer opinion towards various aspects of movies such as story, music, performances, and so on. They are a good source to publicly analyze opinion automatically. Aspect-based and sentiment analysis of movie reviews based on a multitask classification model rooted in the Bidirectional Long Short-Term Memory (BiLSTM) structure is the theme of this study. The objective of this research is to develop and evaluate a multitask BiLSTM-based model capable of simultaneously classifying sentiment polarity and movie review aspects to enhance fine-grained opinion mining. Data was collected from Platform X through web crawling and subjected to various text preprocessing steps before feeding them into the model. Unlike traditional approaches that treat sentiment and aspect classification as independent operations, the method proposed in this work is performing both simultaneously—sentiment prediction (positive, neutral, negative) and aspect categories (plot, music, actors, others). The model was compared between three different sizes of BiLSTM layers—32, 64, and 128 units—to investigate the influence of model capacity on performance. A 10-fold cross-validation scheme also implemented to confirm the reliability and robustness of results. Experiment findings reveal that the 128-unit BiLSTM model outperformed other models across the board, particularly at picking up subtle contextual relationships, to achieve the highest accuracy score in both tasks. Although this model significantly longer to train, its improved generalization—most notably for difficult sentiment- aspect pairs such as neutral or low-resource categories—validated the trade-off. The findings validate the effectiveness of BiLSTM-based multitask learning for comprehensive movie review analysis, demonstrating the importance of model capacity in tackling complex language patterns and fine-grained opinion identification.
Co-Authors Abduh Salam Adhe Akram Azhari Adhitya Aldira Hardy Aditya Andar Rahim Aditya Firman Ihsan Aditya Gumilar Aniq A. Rohmawati Aniq Atiqi Rohmawati Aqilla, Livia Naura arief rahman Arnasli Yahya Asramanggala, Muhammad Sulthon Aufa, Rizki Nabil Azmi Aulia Rahman Chamadani Faisal Amri Christina Natalia Claudia Mei Serin Sitio Damar, Muhammad Dede Tarwidi Derwin Prabangkara Ekaputra, Muhammad Novario Elqi Ashok Erna Sri Sugesti Fairuz, Mitha Putrianty Fatha, Rizkialdy Fathin, Muhammad Ammar Fatri Nurul Inayah Gede Astawa Pradika Gilang Brilians Firmanesha Gusti Aji, Raden Aria Gutama, Soni Andika Hawa, Iqlima Putri Haziq, Muhammad Raffif Hilda Fahlena I Putu Ananda Miarta Utama Ibnu Muzakky M. Noor Indra Kusuma Yoga Indri Octavellia Wulanissa Irfani Adri Maulana Jauzy, Muhammad Abdurrahman Al Juniardi Nur Fadila Lesmana, Aditya Mahadzir, Shuhaimi Maharani, Anak Agung Istri Arinta Mardha Al Nazhfi Ali Mitha Putrianty Fairuz Muh. Kiki Adi Panggayuh Muhammad Damar Muhammad Ghifari Adrian Muhammad Hadyan Baqi Muhammad Ikram Kaer Sinapoy Muhammad Novario Ekaputra Muldani, Muhamad Dika Nanda Ihwani Saputri Naufal Alvin Chandrasa Nenny Lisbeth Minarno Ni Made Dwipadini Puspitarini Nur Fadila, Juniardi Nuraena Ramdani Nurul Fajar Riani Pernanda Arya Bhagaskara S M Pilar Gautama, Hadid Purwanto, Brian Dimas Putra, Ihsanudin Pradana Putri, Pramaishella Ardiani Regita Rachmadania Irmanita Rafika Salis Rahmanda, Rayhan Fadhil Ridha Novia Ridho Isral Essa Rifaldy, Fadil Rizky Fauzi Ramadhani Rizky Yudha Pratama Rizky, Muhammad Zacky Faqia Salis, Rafika Salsabila, Syifa Sinaga, Astria M P Siti Uswah Hasanah Sri Harini Sri Harini Suhendar, Annisya Hayati Winico Fazry Wira Abner Sigalingging Yahya, Arnasli Yuliant Sibaroni Zaidan, Muhammad Naufal