Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Soybean Disease Detection with Feature Selection Using Stepwise Regression Algorithm: LVQ vs LVQ2 Muhamad, Nida; Endah, Sukmawati Nur; Sarwoko, Eko Adi; Sasongko, Priyo Sidik
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 5, No. 2, May 2020
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (518.977 KB) | DOI: 10.22219/kinetik.v5i2.919

Abstract

ndonesia's soybean needs increase from year to year. But according to data from the Badan Pusat Statistik (BPS) the amount of national soybean productivity is still low, so the fulfillment of soybean needs is done by importing soybeans from several countries such as China, Ukraine, Canada, Malaysia, and the United States. Low soybean productivity is caused by several factors. One of the causes is disease. This study aims to create a soybean disease detection by applying Learning Vector Quantization 2 (LVQ2) neural network algorithm(ANN) and Stepwise Regression Algorithm attribute selection. The attribute variables used consisted of 35 symptoms of the disease in soybean crop data. The data used in this study is a soybean dataset taken from University of California Irvine Machine Learning Repository as much as 200 data. The distribution of training data and test data is done by the k-fold cross validation method with a value of k = 10. The result of the study shows that the best paramater use in lVQ2. The results showed that the best parameters in LVQ2 is learning rate (α) value of 0.3; epsilon 0.04; and maximum epoch 100. While the best attribute selection uses the parameter p to enter and p to remove of  0.15 which produces 17 selected attributes such as date, plant stand, precipitation, leaves, leaf spot halo, leaf spot margins, leafspot size, leaf mildew, stem canker, stem fungi, external decay, fruit pods, fruit spots, seeds, mold growth, seed discolor, roots. The best results in this study resulted in an accuracy of 90.5%, 9.5% error rate, 90.5% sensitivity, and 98.94% specificity
The Comparison of Imbalanced Data Handling Method in Software Defect Prediction Khadijah, Khadijah; Sasongko, Priyo Sidik
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 5, No. 3, August 2020
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v5i3.1049

Abstract

Software testing is a crucial process in software development life cycle which will affect the software quality. However, testing is a tedious task and resource consuming. Software testing can be conducted more efficiently by focusing this activitiy to software modules which is prone to defect. Therefore, an automated software defect prediction is needed. This research implemented Extreme Learning Machine (ELM) as classification algorithm because of its simplicity in training process and good generalization performance. Aside classification algorithm, the most important problem need to be addressed is imbalanced data between samples of positive class (prone to defect) and negative class. Such imbalance problem could bias the performance of classifier. Therefore, this research compared some approaches to handle imbalance problem between SMOTE (resampling method) and weighted-ELM (algorithm-level method).The results of experiment using 10-fold cross validation on NASA MDP dataset show that including imbalance problem handling in building software defect prediction model is able to increase the specificity and g-mean of model. When the value of imbalance ratio is not very small, the SMOTE is better than weighted-ELM. Otherwise, weighted-ELM is better than SMOTE in term of sensitivity and g-mean, but worse in term of specificity and accuracy.Software testing is a crucial process in software development life cycle which will affect the software quality. However, testing is a tedious task and resource consuming. Software testing can be conducted more efficiently by focusing this activitiy to software modules which is prone to defect. Therefore, an automated software defect prediction is needed. This research implemented Extreme Learning Machine (ELM) as classification algorithm because of its simplicity in training process and good generalization performance. Aside classification algorithm, the most important problem need to be addressed is imbalanced data between samples of positive class (prone to defect) and negative class. Such imbalance problem could bias the performance of classifier. Therefore, this research compared some approaches to handle imbalance problem between SMOTE (resampling method) and weighted-ELM (algorithm-level method).The results of experiment using 10-fold cross validation on NASA MDP dataset show that including imbalance problem handling in building software defect prediction model is able to increase the specificity and g-mean of model. When the value of imbalance ratio is not very small, the SMOTE is better than weighted-ELM. Otherwise, weighted-ELM is better than SMOTE in term of sensitivity and g-mean, but worse in term of specificity and accuracy.