Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : TEKNIK

Aplikasi Penginderaan Jauh dan EPA-SWMM untuk Simulasi Debit Banjir Akibat Perubahan Lahan Sub DAS Banjaran Ariwibowo, Mohammad Lutfi; Suripin, S; Atmojo, Pranoto Samto
TEKNIK Vol 38, No 2 (2017): (Desember 2017)
Publisher : Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (573.303 KB) | DOI: 10.14710/teknik.v38i2.13804

Abstract

Tataguna  lahan  di  Sub  Daerah  Aliran  Sungai  (DAS)  Banjaran  telah mengalami perubahan yang cukup tinggi selama  kurun  waktu  1995  sampai  2001. Lahan sawah berkurang 1.759,28 hektar menjadi 1.603,97 hektar, tegalan berkurang  289,54 hektar menjadi 283,32 hektar dan permukiman bertambah 1.284,36  hektar menjadi 1.445,88 hektar. Alih fungsi lahan ini mengakibatkan banjir sering terjadi. Beberapa kali Sungai Banjaran meluap menyebabkan banjir di permukiman dan ruas jalan. Kajian pengaruh perubahan lahan terhadap debit banjir perlu dilakukan sehingga peningkatan debit banjir dapat dikendalikan.Tujuan penelitian ini menganalisis debit banjir secara periodik sesuai dengan perubahan tata guna lahan yang terjadi berdasarkan data hidrologi dan parameter DAS. Perhitungan debit banjir dilakukan dengan kalibrasi Environmental Protection Agency – Storm Water Management Model( EPA-SWMM), yaitu metode Hidrograf Observasi (debit terukur) yang  dikalibrasi dengan metode Nash. Analisis perubahan lahan menggunakan peta tataguna lahan tahun 2005, Citra Satelit Quick Bird tahun 2010 dan 2014 yang berbasis Geography Information System (GIS). Penggunaan citra satelit resolusi tinggi Quick Bird  memenuhi ketepatan dalam menentukan daerah impervious dan pervious sertamorfometri DAS sebagai parameter utama dalam input EPA-SWMM. Model yang telah terkalibrasi digunakan untuk simulasi debit rencana  sampai periode ulang  50  tahun.Perubahan  lahan  selama tahun  2005-2014  permukiman meningkat sebesar 10,98 ha (2,39 %), luas hutan menurun 1,67 ha (0,07%), telah mengakibatkan kenaikan debit banjir Q2  sampai Q50  tahun. Besarnya debit dan kenaikannya berturut-turut sebagai berikut : Q2  tahun sebesar 3,08 m3/dtk (2,16 %), Q5 tahun sebesar 3,5 m3/dtk (1,87 %), Q10 tahun sebesar 3,72 m3/dtk (1,7 %), Q25 tahun sebesar 3,94 m3/dtk (1,60 %) dan Q50 tahun sebesar 4,13 m3/dtk (1,50 %).  Volume banjir terjadi peningkatan yakni: Q2 tahun sebesar 0,57 % (10. 106 ) liter, Q5 tahun sebesar 0,45 % (12.106 ) liter, Q10 tahun sebesar 0,42 % (13. 106) liter, Q25 tahun sebesar 0,33 % (12.106) liter dan Q50 tahun sebesar 0,35 % (14.106) liter. Usaha pengendalian banjir pada periode ulang 50 tahun (Q50) yang disimulasikan mampu menurunkan debit banjir antara lain : penegakkan hukum  sebesar 14,43 m3/dtk (5 %), embung sebesar 20,9 m3/dtk  (7,1 %) dan sumur resapan sebesar 31,18 m3/dtk (10,73 %). Skenario RTRW sebesar 26,3 m3/dtk (9,05 %), kombinasi sumur resapan dan penegakan hukum sebesar 45,92 m3/dtk (15,81 %) dan kombinasi embung dan penegakan hukum sebesar 40,58 m3/dtk (13,97 %). Dari hasil simulasi diperoleh pembuatan sumur resapan, kombinasi sumur resapan dan penegakan hukum, kombinasi embung dan penegakan hukum mampu menurunkan debit banjir sampai pada Q25
MODEL PREDIKSI TIGGI MUKA AIR SUNGAI KALI GARANG SEMARANG DENGAN JARINGAN SYARAF TIRUAN Windarto, Joko; Pawitan, Hidayat; Suripin, Suripin; J.P., M. Januar
TEKNIK Volume 29, Nomor 3, Tahun 2008
Publisher : Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (431.278 KB) | DOI: 10.14710/teknik.v29i3.1966

Abstract

One of the big rivers flowing in center of Semarang city is Garang river with watershed area about 220km2 and having characteristic such as big flood discharge and flash flood. Where flash flood on January25th 1990, caused more than 45 people died and goods losses until 8.5 billion rupiahs. One of some modelsto pedict water level is used black box model. Artificial Neural Network one’s of the black bock model . Inthis research, Artificial Neural Network (ANN) with back propagation method is used to predict waterlevel in Garang river where as input are rainfall in upstream of Garang river during two days, while asoutput is water level in downstream of Garang river for two hour later. Result of optimum predicting haveMSE 0.0037 and average of error 1.18 %.
Evaluation of Soil Water Assessment Tool (SWAT) Model Accuracy in Estimating Erosion and Sedimentation Rates in the Sutami Reservoir Watershed Wijaya, Hendri; Wulandari, Dyah Ari; Suripin, Suripin
TEKNIK Vol 46, No 2 (2025) April 2025
Publisher : Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/teknik.v46i2.67929

Abstract

The storage capacity of the reservoir is affected by poor management of the Watershed (DTA), which in turn influences erosion and sedimentation levels. In 1972, the erosion rate at Sutami Reservoir was 0,18 mm/year, rising to 1.44 mm/year by 2022. This data reflects a significant increase in the erosion rate within the Sutami Reservoir watershed, highlighting the need for effective watershed management modeling. The Soil and Water Assessment Tool (SWAT) is commonly used for watershed management assessment. This study aims to predict erosion and sedimentation rates using SWAT and evaluate the accuracy of its simulations through calibration and validation. The simulation results from SWAT show that the total erosion rate is 5,280.45 tons/ha/year, with a total sedimentation of 11,662,851.94 tons/year. Additionally, These results were compared with an analysis using the USLE method, which indicated an erosion rate of 5,178.98 tons/ha/year and sedimentation of 11,060,798.14 tons/year. The comparison of both methods showed similar outcomes, suggesting that the SWAT model provides reasonably accurate predictions. The calibration process, using observed discharge data from 2022 and SWAT-simulated discharge, yielded an NSE value of 0.778, classified as 'very good.' On the other hand, validation using discharge data from 2023 and SWAT-simulated discharge yielded an NSE value of 0.660, classified as "good." Based on these results, the SWAT simulation offers a reliable representation of calibration and validation, making it an appropriate model for this study.
The Impact of Sepaku Semoi Dam Construction on the Reduction of Tengin River Discharge Using the HEC-HMS Model Simbolon, Bernas; Suripin, Suripin; Suharyanto, Suharyanto
TEKNIK Vol 46, No 2 (2025) April 2025
Publisher : Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/teknik.v46i2.67796

Abstract

Floods are one of the most frequent hydrometeorological disasters in Indonesia, particularly in river basin areas. One of the river basins frequently experiencing floods is the Sepaku Watershed (DAS Sepaku). In recent years, the intensity and frequency of flooding in this area have increased. To mitigate future occurrences, flood routing (reservoir routing) calculations are necessary. One of the measures to reduce flooding is the construction of a dam. In response, the Central Government, through the Ministry of Public Works and Housing, has undertaken the development of Sepaku Semoi Dam in Penajam Paser Utara Regency, as part of efforts to optimize water resource potential within the territorial area of the future capital city (IKN). The Sepaku Semoi Dam is projected to supply raw water at a rate of approximately 2,500 liters per second, mitigate flooding, and support tourism. This study aims to analyze flood discharge at the Sepaku Semoi Dam using the HEC-HMS model with the reservoir routing method. The modeling seeks to rapidly estimate flood discharge and assess how changes in storage capacity influence peak discharge conditions, as well as to analyze the impact of dam construction. The flood routing analysis results indicate that the flood reduction for Q1000-year return period is 74.34%, while the outflow discharge for Q50-year return period is 105.7 m³/s, which is lower than the capacity of the Tengin River downstream of the Sepaku Semoi Dam.
Optimization of Dredging Location Determination in Sutami Reservoir Using the Cut and Fill Method Pambudi, Tri; Nugroho, Hari; Suripin, Suripin
TEKNIK Vol 46, No 2 (2025) April 2025
Publisher : Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/teknik.v46i2.67919

Abstract

The Sutami Dam is located on the Brantas River, precisely in Karangkates Village, Sumberpucung District, Malang Regency. The Sutami Dam has been in operation for fifty-one years. Based on observations in the field, the rate of sedimentation entering the Sutami Reservoir is quite high, resulting in shallowing in the reservoir storage area up to the intake gate, which can affect the performance and productive life of the reservoir. This research is conducted to evaluate the planning of mapping dredging locations, the potential sediment that can be dredged, and the increase in the volume capacity of the dredging equipment. This research uses data from bathymetry, which is then analyzed for sedimentation and scour values compared between 2019 and 2022. For soil parameter data, laboratory test results such as grain size analysis and hydrometer analysis are utilized. Data analysis using the cut-fill method in ArcMap 10.8.2 software. The results of this research show that in carrying out dredging activities in the reservoir area, it is necessary to divide the dredging location into two zones with two types of dredgers that have different specifications. To increase the dredging volume capacity in the Sutami Reservoir using the scenario of using two existing dredgers and the addition of two new dredgers, an increase in the dredging capacity in the Sutami Reservoir of 1,702,189.00 m³ per year was obtained.
Co-Authors ., Muhrozi ., Soebroto Adi Saputra Adika Cakranagara agung fitra siregar Agus Eko Kurniawan, Agus Eko Agus Priyanto Agus Priyanto Ahmad Fauzi Rosandi Ahsan Habib Aji Perdana Wira Utama Alvin Aditya Amir Hadziq Fahmi Andhika Rhama Mahardika Andrean Rahady Juanizar Andreas Tigor Oktaga, Andreas Andrey Suryanto Andung Yunianta Arief Budihardjo, M Arif Kurniawan Ariwibowo, Mohammad Lutfi As'ad, Mohammad Bagus Wiratama Ashri Febrina Rahmasari Aulia Wahyu Rahmawati Bagus Hario Setiadji Baihaqi, Fajar Andi Baskoro, Ari Yudha Benson Limbong bramantyo herawanto Bramantyo Herawanto Brian Ridhlo Adila Darwin Pakpahan, Darwin Denny Nugroho Sugianto Desyta Ulfiana Dwi Kurniani Dwi Kurniani Dwi Kurniani Dwi Kurniani Dwi Purwantoro Sasongko Dwi Yuliasari Dwitama Aji Putriana Dyah Ari Wulandari Dyah Ari Wulandari Evi Rahmawati Fadilah . Fadilah . Fahmi Anggriawan Yulianto Faqih, Nasyiin Fredy suryanto Hari Budieny Hari Budieny Hari Nugroho Hari Nugroho Harjanti, Widyayuni Nur Hartuti Purnaweni Hartyan, Dionysius Edna Hary Budieny Hary Budieny Hendri Wijaya, Hendri Henny Herawati heru budhi krisnanto Hidayat Pawitan Ignatius Sriyana Ignatius Sriyana intan fauziah ramadhini Iwan K. Hadihardaja Jati Utomo Dwi Hatmoko Joko Windarto Kartini Kartini Khoirul Murod Kikis Dinar Yuliesti Kinathi Fitria Krisma Adijaya Lisa Adatika Luckman Ismail M. Januar J.P. Maknun, Dillon Asmara Martin Martunas Agung P.S. Marupa, Ivan Matias Roy Adi Wijaya, Matias Muchammad Chusni Irfany Muhammad Firqotul Ulum Muhammad Helmi Muhrozi . Mushthofa Nastain Nur Yuwono Nur Yuwono Osfaldo, O Pradnya Paramita Soka Pudyawati Pranoto Samto Atmodjo Prasetyo Hari Wibowo Pratama, Alfyan Amar Priyo Nugroho priyo Nugroho P. Priyo Nugroho Parmantoro Propezite Nurhutama Mustain Purwanto Purwanto Qomaruddin, Mochammad Rahadianti Kusuma Dewi Rarasati, Indang Dewi Ratih Pujiastuti Ricky Zefri Riekea Astika Putri Gultom Rudi Yuniarto Adi Sahat Hamanangan Sinaga Salamun Salamun Salamun Salamun Salamun Salamun Sari, Yunitta Chandra Satriyo Pandu Wicaksono Simbolon, Bernas Slamet Hargono Soebroto . Sri Eko Wahyuni Sri Prabandiyani R. Wardani Sri Prabandiyani R. Wardani, Sri Prabandiyani R. Sri Sangkawati Sachro Sri Sangkawati Sachro, Sri Sriyana Sriyana Sudarno Sudarno Sudarno Sudarnoutaomo Sudarnoutaomo Suharyanto Suharyanto Suharyanto Suharyanto Suharyanto SUHARYANTO SUHARYANTO Sukma Adji Nugrahedi Sumbogo Pranoto Suprapto Suprapto surya adi kusuma Suseno Darsono Suseno Darsono Suseno Darsono Sutarto Edhisono Sutrisno Gultom Syafrudin Syafrudin Taruna, Dwiva Anbiya TATI NURHAYATI Taufik Dani Thomas Resa Putra Tri Pambudi, Tri Trias Wigyarianto Vita Ariesta Fitriana Wahyudi Wahyudi Wahyuningrum, Catur Ayu Widyayuni Nur Harjanti Wisnu Prianto Zefri, Ricky