Claim Missing Document
Check
Articles

Found 13 Documents
Search

PROSES REFORMASI KATALITIK A.S. Nasution; Oberlin Sidjabat; Abdul Haris; Morina Morina
Swara Patra Vol 1 No 2 (2011): Swara Patra
Publisher : Pusat Pengembangan Sumber Daya Manusia Minyak dan Gas Bumi

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Proses separasi minyak bumi adalah proses pertama untuk pemisahan minyak bumi menjadi fraksi-fraksinya. Proses ini meliputi proses distilasi atmosfer dan distilasi vakum, yang menghasilkan nafta, kerosin, distilat vakum dan residu (residu atmosferik dan residu vakum).Dalam rangka meningkatkan nilai tambah fraksi minyak bumi tersebut, maka dilakukan proses tahap kedua, yaitu: konversi, baik berupa proses termal maupun proses katalitik. Bensin mempunyai kisaran titik didih dari 40oC sampai 220oC yang mengandung grup hidrokarbon parafin, olefin, naftena, dan aromatik dengan variasi nilai angka oktananya cukup besar
THE CHARACTERISTICS OF A MIXTURE OF KEROSENE AND BIODIESEL AS A SUBSTITUTED DIESEL FUEL Oberlin Sidjabat
Scientific Contributions Oil and Gas Vol. 36 No. 1 (2013): SCOG
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/scog.36.1.6

Abstract

Physicochemical properties characterization a mixture of biodiesel and kerosene were carried out to investigate their potential use as a substituted diesel fuel for domestic purposes. The characteristic assessments were done by comparing the standard requirement for diesel fuel. The properties characterization of the biodiesel blends with kerosene were density, viscosity, pour point, cloud point, distillation, and cetane number, which is related to the cold fl ow properties of biodiesel. The characteristics fuel property of biodiesel blends with kerosene in proportion at 2.5:97.5, 5:95, 10:90, 15:85, 20:80, 30:70, and 50:50 was found mostly meet the requirement the specification of diesel fuel. Biodiesel is mixed with kerosene to bring many of the beneficial characteristics to be a substituted diesel fuel. Overall physicochemical characteristics of blendingfuel were reduced by the increasing of kerosene concentrations. Kerosene can play a role as a diluent agentto reduce the characteristic of cold fl ow properties of biodiesel
Influence Of Feedstocks In Biodiesel Production On Its Physico-Chemical Properties Of Product : A Review Oberlin Sidjabat
Scientific Contributions Oil and Gas Vol. 36 No. 3 (2013): SCOG
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/scog.36.3.14

Abstract

Biodiesel is attracting increasing attention worldwide as a substituted petroleum diesel fuel or a blending component in transport sector. Biodiesel also become more attractive because of its environmental benefits and the fact that it is made from renewable resources. Biodiesel feedstock can be divided into four main categories: (i). Edible vegetable oi; (ii). Non-edible vegetable oil, (iii); Waste or used cooking oil; and (iv). Animal fats. There are two major factors to take into consideration when dealing with feedstock for biodiesel production i.e the source and composition. Biodiesel feedstocks have three main types of fatty acids as the main compounds that are present in a triglyceride: saturated (Cn:0), monounsaturated (Cn:1) and polyunsaturated (Cn:2,3). The overall biodiesel physicochemical properties are strongly influenced by the properties of individual fatty acid esters in biodiesel. Fatty acid composition varies for all biodiesel feedstocks that affected the product quality. Important fuel properties of biodiesel that are influenced by the fatty acid composition are viscosity, cetane number, heating/ calorific value, cloud point,and oxidation stability. Oxidation stability is one of the major issues influencing the use of biodiesel or FAME (fatty acid methyl ester), due to the nature of biodiesel, makes it more susceptible to oxidation or auto-oxidation during long-term storage than petroleum diesel fuel. The oxidation stability values of the biodiesel range from 0.4 hr (for the most unsaturated biodiesel, linseed) to 35.5 hr (for the most saturated one, coconut).
CATALYTIC Morina; Oberlin Sidjabat
Scientific Contributions Oil and Gas Vol. 37 No. 3 (2014): SCOG
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/scog.37.3.226

Abstract

Plastic
Development Of Catalyctic Converter For Unleaded Gosaline Program In Indonesia Oberlin Sidjabat; E. Jasjfi
Scientific Contributions Oil and Gas Vol. 21 No. 1 (1998): SCOG
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/scog.21.1.256

Abstract

Recent economic development in Indonesia, as in other ASEAN countrie, has resulted in improved prosperity as reflected by the significant increase in the numbers of motor vehicles, particulary in big cities. This growth in car population and traffic is unfortunately accompanied by increase in not only of the country’s energy consumption but also increased air pollution. Almost 70% of atmospheric pollution in big cities is reported to be contributed by motor vehicles.In view of this situation, the Government of Indonesia has launched the “Blue Sky program” and introduced unleaded gasoline. Indonesia manufacturing industries have responded also by designing “nationalautomobiles” to be fabricated in Indonesia, and to run with unleaded gasoline. Some of these vehicles will be equipped with catalytic converters to reduce exhaust gas emissions.In support of this program, LEMIGAS R/D Center for Oil and Gas Technology is developingits-own catalytic converters that can be fitted into these cars. The work carried out toward this end is outlined briefly in this paper
Calculation Of Nitrogen Heat Adsorption On Various Catalysts Usingbet-Constant (Bet-0 Data) Triyono; Wega Trisunaryanti; Oberlin Sidjabat
Scientific Contributions Oil and Gas Vol. 31 No. 3 (2008): SCOG
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

BET-C (Brunauer-Emmett-Teller-Constant) was used to calculate the heat of adsorp-tion (AHaijj of nitrogen gas on the various catalysts. The -well-known Brunauer-Emmett-Teller (B.E.T.) equation is usedprimarily to determine the surface area from the physicaladsorption of a gas on a solid surface. Surface area of catalysts -was determined by usingsurface area analyzer (NOVA 1000). The BET-C included in the data is usually neglected or is not taken into accoimt. How-evei; by using the basic principles of the adsorption theory fitted ivith the functions basedon the BET adsorption model, the iniportant data of BET-C can be shoivn in this study. Thevalue of the AHa(h (NJ for zeolite, H-zeolite, Pt/zeolite, Pt-Pd/zeolite, and Pt-Ce/zeolitecalculatedfrom the equation derivedfrom BET-C are -6.43, -6.52, -8.78, -8.69, -9.71 and-9.52 kJ/mol, respectively.
PRODUCTION OF ENVIRONMENTAL FRIENDLY FUEI IN INDONESIAN REFINERY A.S. Nasution; Oberlin Sidjabat; Abdul Gafar; Rasdinal Ibrahim; Morina
Scientific Contributions Oil and Gas Vol. 28 No. 2 (2005): SCOG
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Worldwide crude supplies are experiencing a mod-est trend toward heavier and high sulfur content'4>. Theaverage annual demand growth rate for light products(gasoline, kerosene and diesel oil) is higherthan that forresidual fuel oil(2). Therefore, converting additional bot-toms into light product by either thennal < >r catalytic pro-cesses will be needed
Pengaruh Teknik Pencampuran Biodiesel dengan Metode Splash (Pencemplungan) terhadap Unjuk Kerja Kendaraan Bermesin Diesel Oberlin Sidjabat
Lembaran Publikasi Minyak dan Gas Bumi Vol. 47 No. 1 (2013): LPMGB
Publisher : BBPMGB LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penggunaan biodiesel yang meningkat menciptakan beberapa tantangan dalam penanganannya untuk sampai ke pelanggan sebagai bahan bakar campuran (BXX). Yang paling penting bagi produsen pencampur yang segera ditangani adalah jaminan bahwa bahan bakar diesel dan biodiesel dapat dicampurkan secara homogen dan dalam satu fasa. Yang paling sering ditanyakan adalah bagaimana biodiesel akan dicampurkan? Sesuai dengan regulasi untuk mencampurkan biodiesel dan bahan bakar diesel di Indonesia bahwa maksimum penggunaan biodiesel adalah B10. Pengaruh teknik pencampuran biodiesel dengan cara cemplung (splash) atau langsung dimasukkan ke dalam tangki bahan bakar diteliti pada kinerja mesin khususnya terhadap saringan bahan bakar (fuel fi lter). Bahan bakar yang digunakan pada penelitian ini sebagai B20 dan biodiesel diproduksi dari bahan baku minyak sawit. Apabila biodiesel diisikan terlebih dahulu dan kemudian diikuti dengan minyak diesel (minyak solar), hasilnya menunjukkan bahwa saringan bahan bakar akan tersumbat setelah kendaraan beroperasi sejauh 1500 km. Hal ini diharapkan bahwa pencampuran terjadi melalui agitasi (guncangan) bila kendaran melaju dalam perjalanan. Akan tetapi apabila bahan bakar minyak diesel diisikan terlebih dahulu dan diikuti dengan biodiesel maka hasilnya menunjukkan bahwa saringan bahan bakar akan tersumbat setelah kendaraan beroperasi sepanjang 2500 km. Hal ini menunjukkan bahwa kesukaran pada pencampuran dapat diatasi jika biodiesel diisikan paling akhir setelah bahan bakar minyak diesel. Juga biodiesel lebih berat dari bahan bakar diesel dan hal ini sukar teragitasi apabila kendaraan berjalan. Sebaliknya pada uji jalan (road test), dengan menggunakan B30, menunjukkan bahwa tidak ada masalah terhadap saringan bahan bakar (fuel fi lter), dimana B30 dipreparasi dengan mencampurkan biodiesel dengan bahan bakar minyak diesel dalam tangki lain sampai homogen sebelum diisikan ke tangki bahan bakar kendaraan.
Pengembangan Teknologi Bersih dan Kimia Hijau dalam Meminimalisasi Limbah Industri Oberlin Sidjabat
Lembaran Publikasi Minyak dan Gas Bumi Vol. 42 No. 1 (2008): LPMGB
Publisher : BBPMGB LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Teknologi atau proses yang digunakan industri-industri untuk memproduksi produk-produk yang kita butuhkan sangat mempengaruhi kualitas hidup kita terutama terhadap lingkungan dan kesehatan. Pada umumnya industri-industri masih banyak menghasilkan limbah yang merusak lingkungan. Oleh karena itu dibutuhkan solusi untuk meminimalisasi limbah industri atau kerusakan lingkungan dengan mengembangkan teknologi bersih (clean technology) berdasarkan konsep kimia hijau (green chemistry). Pengembangan teknologi atau proses untuk meminimilisasi limbah perlu pertimbangan beberapa aspek yaitu Faktor Lingkungan (Environmental Factor), Utilisasi Atom, dan Peran Katalisis (Proses Katalitik). Aspek yang paling penting dan juga mempunyai pengaruh untuk meminimalisasi limbah industri-industri adalah proses katalitik.
Pengaruh Air dan Etanol terhadap Reaktivitas Hidrogenolisis Isoamil Alkohol pada Katalis Ni/Zeolit Triyono; Oberlin Sidjabat
Lembaran Publikasi Minyak dan Gas Bumi Vol. 42 No. 2 (2008): LPMGB
Publisher : BBPMGB LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Air, etanol (etilalkohol) dan isoamil-alkohol dapat membentuk larutan azeotroph. Di dalam limbah cair, keberadaan alkohol selalu didapatkan bersama-sama dengan larutan berair. Minyak fusel mengandung berbagai macam senyawa alkohol, seperti etanol dan isoamilalkohol. Di dalam penelitian ini, dilakukan proses hidrogenolisis antara campuran isoamil-alkohol dengan air dan juga campuran antara isoamil-alkohol dan etanol dengan masing-masing kadar air atau etanol yang divariasikan. Katalis yang digunakan adalah Ni/Zeolit dengan kandungan Nikel 0,4% berat yang dibuat dengan metoda impregnasi basah. Hasil penelitian menunjukkan bahwa bila jumlah kadar air meningkat (bertambah) maka konversi isoamil-alkohol akan menurun (berkurang). Di lain fihak, bila jumlah kadar etanol meningkat (bertambah) maka konversi isoamil-alkohol akan meningkat (bertambah).