Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Bulletin of Computer Science Research

Klasifikasi Citra Medis Penyakit Pneumonia dengan Metode Convotional Neural Network Khairudin; Bobi Agustian; Nursakinah, Badriah
Bulletin of Computer Science Research Vol. 5 No. 4 (2025): June 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v5i4.576

Abstract

Pneumonia is a pulmonary infection that remains one of the leading causes of death among children under five, especially in developing countries. Early detection and rapid diagnosis are critical in managing this disease, particularly in regions with limited access to medical professionals. This study aims to develop an automatic classification system for pediatric chest X-ray images using the Convolutional Neural Network (CNN) method to detect pneumonia. The dataset used consists of 5,863 pediatric chest X-ray images categorized into two classes: Pneumonia and Normal. The images underwent preprocessing stages including resizing, normalization, augmentation, and noise removal. The CNN architecture includes stacked convolutional layers, max pooling, dropout, and a fully connected layer with sigmoid activation. The model was trained using 80% of the data for training, 10% for validation, and 10% for testing. Performance was evaluated using accuracy, precision, recall, and F1-score metrics. Evaluation results showed that the model achieved over 93% accuracy, with 92.5% precision, 94.2% recall, and an F1-score of 93.3%. Transfer learning using pretrained models (VGG16 and ResNet50) further improved performance. These findings demonstrate that CNN is an effective tool for medical image classification and has strong potential to support fast and accurate pneumonia diagnosis, especially in resource-limited healthcare settings.
Klasifikasi Gender Berbasis Citra Wajah Menggunakan Clustering Dan Deep Learning Okky Prasetia; Syaeful Machfud; Rosyani, Perani; Bobi Agustian
Bulletin of Computer Science Research Vol. 5 No. 4 (2025): June 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v5i4.581

Abstract

Gender classification based on facial images is a significant challenge in the field of computer vision, especially when dealing with unstructured data sourced from social media platforms. This study proposes an integrated approach combining facial image preprocessing, clustering methods, and deep learning to enhance the accuracy of gender classification. The dataset used was obtained from a Big Data Competition and consists of male and female face images sourced from Instagram. Preprocessing was performed using OpenCV for face detection and cropping. Subsequently, the data were clustered using K-Means and DBSCAN algorithms to reduce noise and redundancy. Gender classification was then conducted using a sequential learning model based on Inception_v3, enhanced with Agglomerative Clustering for feature refinement. The evaluation of the system demonstrated strong performance with an accuracy of 92.97%, F1-score of 0.89556, precision of 0.97727, and recall of 0.83069. These results confirm that the integration of clustering techniques and deep learning significantly improves the effectiveness of gender classification based on facial images, especially for open-source and non-curated datasets.