Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : J-Intech (Journal of Information and Technology)

Application of Naive Bayes Algorithm for Analysis of User Reviews on Mobile Legends Game: Bang Bang Roba, Al-Muchlis Syachrul Ramadani; Lailiyah, Siti; Yusnita, Amelia
J-INTECH ( Journal of Information and Technology) Vol 13 No 01 (2025): J-Intech : Journal of Information and Technology
Publisher : LPPM STIKI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32664/j-intech.v13i01.1881

Abstract

Mobile Legends: Bang Bang is a highly popular MOBA game, especially among students, which generates a large volume of user reviews on the Google Play Store. These reviews provide a valuable data source for understanding user sentiment. This study conducts sentiment analysis on user reviews using three variants of the Naïve Bayes algorithm: BernoulliNB, GaussianNB, and MultinomialNB. From an initial 5,000 reviews collected via web scraping using Python, 4,428 reviews were used after neutral reviews were removed to focus solely on positive and negative sentiments.The preprocessing steps included case folding, word normalization, tokenization, stopword removal, and stemming. Sentiment labeling was carried out using a lexicon-based approach, comparing the frequency of positive and negative words in each review. The dataset was split in an 80:20 ratio for training and testing.The results show that MultinomialNB achieved the highest accuracy at 75%, followed by BernoulliNB with 74%, and GaussianNB with 50%. MultinomialNB demonstrated superior performance in detecting positive sentiments, while BernoulliNB offered more balanced results. GaussianNB performed poorly due to its assumption of normally distributed continuous data, which is unsuitable for text classification. This study concludes that Multinomial Naïve Bayes is the most effective model for sentiment analysis of user reviews when working with word frequency-based representations.
Application of K-Nearest Neighbor Algorithm For Sentiment Analysis On Free Fire Online Game Based On Google Play Store Reviews Raya, Dimas; Yusnita, Amelia; Haristyawan, Ivan
J-INTECH ( Journal of Information and Technology) Vol 13 No 01 (2025): J-Intech : Journal of Information and Technology
Publisher : LPPM STIKI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32664/j-intech.v13i01.1882

Abstract

The swift expansion of the digital gaming sector, especially online games like Free Fire, has produced extensive user feedback via platforms like the Google Play Store. This research utilizes the K-Nearest Neighbor (KNN) algorithm to conduct sentiment analysis on 5,000 user reviews, with the goal of assessing its classification effectiveness. Following preprocessing (case folding, Text Cleaning, tokenization, stopword Removal, stemming), the data was converted using TF-IDF and balanced through SMOTE. Experimental findings indicate that KNN attained a peak accuracy of merely 36.53% (at k = 14), reflecting weak performance with high-dimensional textual data. In contrast, Logistic Regression attained a notably higher accuracy of 88%, showcasing its dominance for this task. The results offer perspectives for game developers to assess user feelings and emphasize the significance of selecting suitable machine learning models. Future research should investigate advanced classifiers like SVM, Random Forest, or deep learning methods to enhance accuracy.