Claim Missing Document
Check
Articles

Found 15 Documents
Search

Characteristics of Oxidative Storage Stability of Canola Fatty Acid Methyl Ester Stabilised with Antioxidants Prakoso, Tirto; Udomsap, Parncheewa; Tanaka, Akiko; Hirotsu, Toshihiro; Goto, Shinichi
Journal of Engineering and Technological Sciences Vol 44, No 3 (2012)
Publisher : ITB Journal Publisher, LPPM ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (338.148 KB) | DOI: 10.5614/itbj.eng.sci.2012.44.3.7

Abstract

The  storage  effects  on  the  oxidation  characteristics  of  fatty  acid methyl ester of canola oil (CME) were investigated  in this study.CME stabilised with  two  antioxidants, i.e.2,6-di-tert-bytyl-p-cresol  (BHT) and 6,6-di-tert-butyl-2, 2’-methylendi-p-cresol  (BPH),  was  stored at 20, 40 and  60°C.The  oxidation stability data  were measured  by  the  Rancimat test  method and  it was  found  that both BHT and BPH  addition increased  the oxidation resistance of  the  CME.  The results showed that when BPH or BHT was added at a concentration of 100 ppm, the oxidation induction period of the neat CME samples increased from 5.53 h to 6.93  hand  6.14 h,  respectively.  Comparing both antioxidants,  BPH  proved to be more  effective  in  increasing  the  oxidation  resistance  when  both  antioxidants were added at the same concentration.  Furthermore, the oxidation induction timedecreased  linearly  with  the  storage  time.  It  was  shown  that  the  oxidation occurred  rapidly  in  the  first  8  weeks  of  storage.  Later,  a  kinetic  study  was undertaken  and  first-order  kinetics  were  applied  to  explain  the  oxidation characteristics of  the  CME added with antioxidants. This kinetic study focused on  exploiting  the  activation  energy  values  obtained  from  the  Arrheniusequations. Also, the  oxidation effects on  other  quality parameters, including acid value, peroxide value, kinematic viscosity, and water content, were examined.
Catalytic and Thermal Decarboxylation of Mg-Zn Basic Soap to Produce Drop-in Fuel in Diesel Boiling Ranges Neonufa, Godlief F.; Soerawidjaja, Tatang H.; Prakoso, Tirto
Journal of Engineering and Technological Sciences Vol 49, No 5 (2017)
Publisher : ITB Journal Publisher, LPPM ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (829.045 KB) | DOI: 10.5614/j.eng.technol.sci.2017.49.5.2

Abstract

Fatty acid deoxygenation is a method for producing renewable hydrocarbon fuels such as green diesel, jet biofuel and biogasoline. In the present commercial method, deoxygenation is directly applied to vegetable oils through liquid phase hydrotreatment. This method is expensive because it consumes a large amount of hydrogen and requires severe operating conditions. The objective of this study was the production of a diesel-like hydrocarbon fuel that can be considered as drop-in replacement for petroleum-based diesel fuels, by catalytic thermal decarboxylation of Mg-Zn basic soap. In particular, this study investigated the decarboxylation of Mg-Zn basic soap at low temperature and pressure, without external supply of hydrogen. The Mg-Zn basic soap (9/1 mole ratio of Mg/Zn) was derived from palm stearin and decarboxylated at 350 °C and atmospheric pressure for 5 hours. The basic soap effectively decarboxylated, yielding a diesel-like hydrocarbon fuel with a liquid product yield of 62%-weight. The resulting hydrocarbon product is a complex mixture consisting of normal paraffins in the range of carbon chain length C8–C19, iso-paraffins and various olefin products.
Esterifikasi asam lemak bebas dalam minyak sawit mentah untuk produksi metilester Prakoso, Tirto; Kurniawan, Indra B; Nugroho, R Heru
Jurnal Teknik Kimia Indonesia Vol 6, No 3 (2007)
Publisher : ASOSIASI PENDIDIKAN TINGGI TEKNIK KIMIA INDONESIA (APTEKIM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/jtki.2007.6.3.7

Abstract

Methyl esters are one of alkyl esters compound that used as alternative diesel fuel became popular. Methyl esters have similarities on physical and chemical properties with the diesel fuel produced from fossil oil; however it has less combustion and environmental emissions. As fossil oil become rare to be exploited, and the rapid environmental issues, the efforts to develop methyl esters as alternative diesel fuel become a prospective one. One method to produce methyl esters from free fatty acids of crude palm oil (CPO) is the two step esterification-transesterification reaction, each step produce the same final product, however differs in the side product. Esterification produce water and transesterfication produce glycerin. The reaction uses alcohol as main reactant beside the free fatty acids, it can be conducted in batch or continuous production. In this research, the investigation is only emphasized in the first step that is the esterification step to produce methyl esters from free fatty acids contained in crude palm oil. Methanol and sulfuric acid are used as reactant and catalyst respectively. Methyl esters produced by esterification is affected by reaction temperature, amounts of catalyst, and methanol volume. The increase in temperature improved esterification conversion from 19% in 50C to 98% in 60C. While the usage of the highest amount of catalyst, 5 ml/1-CPO, led to produced the highest conversion relative to the conversion from 1 and 3 ml/1-CPO catalyst. Furthermore, 10% amount of methanol per volume CPO produced higher yield than 8%.Keywords : Biodiesel,  CPO Free Fatty Acid Esterification, Methyl Ester ConversionAbstrak Metil ester merupakan suatu senyawa alkil ester yang dapat digunakan sebagai bahan bakar alternatif. Metil ester memiliki sifat fisik dan kimia yang hampir sam a dengan minyak diesel yang dihasilkan dari minyak bumi tetapi emisi pembakaran dari penggunaan ester metal lebih rendah dari pada emisi hasil penggunaan minyak solar. Seiring dengan semakin langkanya sumber minyak bumi dan semakin gencarnya isu lingkungan hidup, pengembangan ester metil sebagai bahan bakar pengganti minyak solar semakin prospektif. Pembuatan ester metil dari asam lemak bebas minyak sawit mentah (crude palm oil) dapat dilakukan dengan beberapa cara antara lain dengan reaksi esterifikasi dan transesterifikasi menggunakan alkohol. Reaksi-reaksi ini dapat dilaksanakan secara batch maupun kontinu. Pada penelitian yang telah dilakukan, pembuatan ester metil dari asam lemak bebas minyak sawit mentah dilakukan dengan reaksi esterifikasi secara batch, dengan reaktan berupa minyak sawit mentah dan metanol. Katalis yang digunakan adalah H2SO4. Konversi ester metil yang dihasilkan dipengaruhi oleh temperatur reaksi, konsentrasi katalis dan konsentrasi metanol. Kenaikan temperatur reaksi akan meningkatkan konversi dari 19% pada 50oC menjadi 98% pada 60oC. Dengan menggunakan konsentrasi katalis tertinggi 5ml/l CPO memicu konversi tertinggi relatif dibandingkan nilai konversi dari 1 dan 3 ml/l CPO. 10% metanol menghasilkan perolehan tinggi dibanding 8%.Kata Kunci: Biodiesel, EsterifikasiAsam Lemak Bebas CPO, Konversi Ester Metil
Synthesis and Characterization of Hydrochar and Bio-oil from Hydrothermal Carbonization of Sargassum sp. using Choline Chloride (ChCl) Catalyst Rustamaji, Heri; Prakoso, Tirto; Rizkiana, Jenny; Devianto, Hary; Widiatmoko, Pramujo; Guan, Guoqing
International Journal of Renewable Energy Development Vol 11, No 2 (2022): May 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.42595

Abstract

The purpose of this study is to alter the biomass of Sargassum sp. into elective fills and high valuable biomaterials in a hydrothermal process at 200oC for 90 minutes, using ZnCl2 and CaCl2 activating agents, withChClas a catalyst. This method generatedthree primaryoutputs: hydrochar, bio-oil, and gasproducts. ChCl to water ratio varies from 1:3, 1:1, and 3:1. The hydrochar yield improved when the catalyst ratio was increased, but the bio-oil and gas yield declined. The highest hydrochar yields were 76.95, 63.25, and 44.16 percent in ZnCl2, CaCl2, and no activating agent samples, respectively.The porosity analysis observed mesopore structures with the most pore diameters between 3.9-5.2 nm with a surface area between 44.71-55.2. The attribute of interaction between activator and catalyst plays a role in pore formation. The hydrochar products with CaCl2 showed the best thermal stability. From the whole experiment, the optimum hydrochar yield (76.95%), optimum surface area (55.42 m2 g-1), and the increase in carbon content from 21.11 to 37.8% were achieved at the ratio of ChCl to water was three, and the activating agent of ZnCl2. The predominant bio-oil components were hexadecane, hexadecanoic, and 9-octadecenoic acids, with a composition of 51.65, 21.44, and 9.87%, respectively the remaining contained aromatic alkanes and other fatty acids. The findings of this study reported that adding activating agents and catalysts improve hydrochar yield and characteristics of hydrochar and bio-oil products, suggesting the potential of hydrochar as a solid fuel or biomaterial and bio-oil as liquid biofuel
Pembuatan asam lemak bercabang dari minyak kepoh Tirto Prakoso; Tatang H Soerawidjaja; Yoel Pasae
Jurnal Teknik Kimia Indonesia Vol 4, No 1 (2005)
Publisher : ASOSIASI PENDIDIKAN TINGGI TEKNIK KIMIA INDONESIA (APTEKIM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/jtki.2005.4.1.6

Abstract

Oil from kepoh tree (Sterculiafoetida L.) seed kernel is a unique oil because it contains fatty acid which has a cyclopropenoid groups and has almost 90% of composition of the oil. The acid is called sterculic acid which has molecular formula C19H34O2. The fatty acids and derivates has an advance characteristic when it is used as cosmetics, lubricants, paint and plastic products. Its branched alcohol ester is expected as an additives for pour point depressant in fuel or lubricant. In this research, the sterculic acid has possibility to be converted to branched fatty acid methyl ester that is  10-methyl octadecanoic methyl ester through rearrangement of cyclopropenoid group and continued by hydrogenation of its double bond with Palladium catalyst. The product  characteristic is reported in each stage of processes in term of iodine number and saponification number. After hydrogenation for 5 hours, it's founded that iodine value for methyl ester is reduced until 2,84 and its saponification value increased up to 476.08. This is shown that saturated branched methyl ester has been formed.Keywords: Sterculia foetida L.kepoh oil, Branched Fatty Acid, Cyclopropenoid Group, Methanolysis, Biodiesel AbstrakMinyak dari inti biji buah pohon kepoh (Sterculiafoetida L.) tergolong minyak nabati yang unik karena komponen utama asam lemaknya adalah asam sterkulat yang berumus molekul C19H34O2 dengan rantai karbonnya mempunyai gugus cyclopropenoid. Asam sterkulat dapat dikonversi menjadi asam lemak bercabang yaitu  asam  10-metil  oktadekanoat C19H34O2. Asam-asam lemak ini atau turunannya dapat digunakan sebagai komponen racikan/ramuan yang melahirkan karakteristik unggul pada berbagai produk seperti kosmetik, pelumas, cat, dan plastik. Ester isopropilnya diharapkan dapat digunakan sebagai bubuhan (additive), penurun titik tuang (pour point depressant) pada pelumas dan biodiesel. Pada penelitian ini, ditunjukkan bahwa asam sterkulat dalam minyak kepoh dapat dikonversi menjadi asam lemak bercabang yaitu 10-metil oktadekanoat dalam bentuk ester metilnya yang bercampur dengan ester metil lainnya, melalui rute metanolisis (transesterifikasi dengan metanol) minyak kepoh, dilanjutkan penyusunan ulang gugus siklopropenoid dan hidrogenasi ikatan-ikatan rangkap dengan katalis Palladium. Setelah hidrogenasi selama 5jam ditemukan bahwa bahwa angka iodium ester metil sudah tereduksi sampai 2,84 dan angka penyabunan meningkat sampai 476,08. Hal ini menunjukkan bahwa telah terbentuk ester metil bercabang yang jenuh, yaitu 9-metil metilheptadekanoat dan 10-metil metioktadekanoat.Kata Kunci: Sterculia foetida L. kepoh oil, Branched Fatty Acid, Cyclopropenoid Group, Methanolysis,  Biodiesel
Pengembangan katalis Kalsium Oksida untuk sintesis biodiesel Widdy Andya Fanny; S Subagjo; Tirto Prakoso
Jurnal Teknik Kimia Indonesia Vol 11, No 2 (2012)
Publisher : ASOSIASI PENDIDIKAN TINGGI TEKNIK KIMIA INDONESIA (APTEKIM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/jtki.2012.11.2.1

Abstract

The Improvement of Calcium Oxide Catalyst for Biodiesel Synthesis The development of industrial’s sector resulted in increasing demand for fuel. Fuel used is obtained from fossil fuel which is limited, and it produces several harmful gases to environment. To overcome these obstacles, the research on alternative energy resources has begun. Biodiesel has become more attractive because of its environmental benefits and it is made from renewable resources. Biodiesel is produced from vegetable oil by transesterification reaction. The aim of this research is development of CaO become super base CaO as heterogeneous for biodiesel synthesis by transesterification. The activities of both catalysts were tested by transesterification reaction in batch reactor at 60–65 oC for 4 hours. Both of those catalysts were characterized; include crystallinity by XRD, strength of base and surface area by BET method. Those solids have the basic strength about 10–11, crystalline structures, and the surface area of super base CaO about 7.7 m2/g and CaO about 9.6 m2/g. The content of methyl ester in biodiesel produced reaches 98.8%. According to SNI (minimal 96.5 %-wt) and ASTM, biodiesel of this reaction can be used as renewable energy source. Keywords: CaO, super base CaO, transesterification, biodiesel Abstrak Berkembangnya industri di dunia mengakibatkan meningkatnya kebutuhan akan bahan bakar. Selama ini bahan bakar yang digunakan diperoleh dari bahan bakar fosil yang jumlahnya terbatas, terlebih lagi hasil pembakaran bahan bakar fosil cenderung tidak ramah lingkungan. Untuk mengatasi berbagai kendala yang ditimbulkan dari penggunaan bahan bakar fosil, penelitian terhadap sumber energi alternatif mulai dilakukan. Biodiesel menarik perhatian dunia karena hasil pembakarannya lebih ramah lingkungan dan berasal dari sumber yang terbarukan. Biodiesel dihasilkan dari minyak nabati melalui reaksi transesterifikasi.Penelitian ini mengembangkan katalis CaO menjadi katalis CaO super basa untuk reaksi transesterifikasi pembentukan biodiesel. Aktivitas katalis CaO dan katalis CaO super basa tersebut diuji melalui reaksi transesterifikasi di dalam reaktor partaian pada suhu 60–65 oC selama 4 jam. Karakterisasi padatan meliputi uji kristalinitas dengan metode XRD, uji kekuatan basa, dan uji luas permukaan dengan metode BET. Hasil penelitian menunjukkan bahwa padatan memiliki kekuatan basa berkisar 10–11, bersifat kristalin, dan memiliki luas permukaan sebesar 7,7 m2/g untuk CaO super basa dan 9,6 m2/g untuk CaO. Kadar metil ester biodiesel yang dihasilkan mencapai 98,8%. Kadar metil ester menurut SNI (minimal 96,5 %-b) dan ASTM, biodiesel dari reaksi ini dapat digunakan sebagai sumber energi terbarukan. Kata Kunci: CaO, CaO super basa, transesterifikasi, biodiesel
Sintesis trigliserida rantai menengah melalui transesterifikasi gliserol dan asam-asam lemaknya Tirto Prakoso; Sarastri Cintya Hapsari; Pilanda Lembono; Tatang H. Soerawidjaja
Jurnal Teknik Kimia Indonesia Vol 5, No 3 (2006)
Publisher : ASOSIASI PENDIDIKAN TINGGI TEKNIK KIMIA INDONESIA (APTEKIM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/jtki.2006.5.3.7

Abstract

Medium Chain Trigliceride (MCT) is a fat substitution which actually is an ester ofmedium ringfatty acid (C, - C,) from glycerol. MCT is not naturally available, so that MCT synthesis is needed. Hartman eta/ (1989) made MCT throught esterification with and without catalyst Zn and do the finishing of MCT product using vacum destilation. This study consisted of the application of Hartman's method to bring the esterification reaction with and without catalyst. The esterification reaction without catalyst performed at I70"C, in vacuum condition (P = 40 kPa) and in theflow ofN2 with ratio offatty acid to glycerol as much as 3,6: I for 8 hours. The cata/ized esterification reaction performed using Zn and H 0,catalyst at I50"C, in vacum condition (P = 40 kPa), with ratio offatty acid to glycerol as much as 3,3 : I and the reaction time was varied between 2- 8jam. The observed responds on every variation are glycerol conversion and MCT's yield. The highest glycerol conversion and MCT's yield has been obtained on the ester{fication reaction without catalyst in vacum condition and in reaction time of8 hours, gave value of I 00% and 97,80% respectively. At the reaction that using Zn catalyst, the highest glycerol conversion is reached in 4 hours as much as 99,26% and the highest MCT'yield is obtained in 8 hours as much as 97,70%. At the reaction using H 0 , catalyst, the highest glycerol conversion was reached in 6 hours as much as 99,74% and the highest MCT's yield was obtained in 2 hours as much as 97,86%Keywords: Esterification, Fatty Acids, MCT(Medium Chain Triglyceride) AbstrakMedium Chain Triglyceride (MCT) adalah pengganti lemak yang merupakan ester asam Lemak rantai menengah (C­6 – C12) dari gliserol. MCT tidak tersedia secara alamiah di alam sehingga diperlukan sintesis MCT. Hartman dkk (1989) membuat MCT melalui esteriftkasi tanpa katalis maupun dengan katalis Zn serta melakukan pemulusan terhadap produk MCT melalui distilasi vakum. Penelitian yang dilakukan meliputi penerapan metode Hartman untuk melangsungkan reaksi esteriftkasi tanpa katalis dan dengan katalis. Reaksi esterifikasi tanpa katalis dilakukan pada temperatur I70°C, dalam kondisi vakum (P = 40 kPa) maupun dalam pengaliran N2 dengan perbandingan asam lemak dan gliserol sebesar 3,6 : 1 selama 8 jam. Reaksi esterifikasi berkatalis dilakukan menggunakan katalis Zn dan H2SO4 pada temperatur I50°C, dalam kondisi vakum (P = 40 kPa), dengan perbandingan asam lemak dan glliserol sebesar 3,3 : 1 dan variasi lama waktu reaksi antara 2 - 8 jam. Respon yang diamati dalam setiap variasi adalah konversi gliserol dan perolehan MCT. Konversi gliserol dan perolehan MCT yang terbaik dicapai pada reaksi esterifikasi tanpa katalis dalam kondisi vakum dan waktu reaksi 8 jam, yaitu berturut-turut sebesar 100% dan 97,80%. Pada reaksi berkatalis Zn, konversi gliserol tertinggi dicapai pada waktu reaksi 4 jam yaitu sebesar 99,26% dan perolehan MCT tertinggi dicapai pada waktu reaksi 8 jam yaitu sebesar 97,70%. Pada reaksi berkatalis H2SO4, konversi gliserol tertinggi dicapai pada waktu reaksi 6 jam yaitu sebesar 99, 74% dan perolehan MCT tertinggi dicapai pada waktu reaksi 2 jam yaitu sebesar 97,86%. Kata Kunci : Asam lemak, Esterifikasi, MCT (Medium Chain Triglyceride)
Sintesis minyak goreng sehat (Diacylglycerol) Tirto Prakoso; Danu Wicaksana; Roy Winarso; Tatang H. Soerawidjaja
Jurnal Teknik Kimia Indonesia Vol 6, No 2 (2007)
Publisher : ASOSIASI PENDIDIKAN TINGGI TEKNIK KIMIA INDONESIA (APTEKIM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/jtki.2007.6.2.1

Abstract

The syntesis of healty cooking oil (Diacylglycerol)Diglyceride I Diacylglycerol (DAG) oil is a compound resulting from the chemical bonding between glycerol and two free fatty acid  molecules  which follows  a  different  metabolic route compared  to triglyceride-type oils so that this type of oil does not cause fat accumulation in the body. This research isfocused at obtaining experimental evidence from the Archer-Daniels-Midland (2002) synthesis method, identifying the  effect  of the molar ratio between the reactants and reaction time on the DAG yield using the glycerolysis method, and at synthesizing a cooking oil with diglycerides as its major component. The diglyceride synthesis process in this research was done via glycerolysis with a varying glycerol : TAG ratio of 1:1, 3:2, 2:1 and 5:2. Reaction time was varied at 1 and 3 hours. The synthesis was undertaken at 190°C, using CH3COOK as catalyst at a dose of 1% of the mass ofTAG reactant. Experimental results indicate that longer reaction time increases the molar amount of diglycerides formed in the healthy cooking oil product. The molar ratio of glycerol to triglycerides  which produces the highest DAG yield was 2:1, with a reaction time of 3 hours, which resulted in a yield of 97. 726%-mol DAG per mol TAG reactant. Higher molar ratio of glycerol to tryglycerides also increases the percentage of monoglycerides  (MAG)formed.Keywords: DAG (Diglycerides),  glycerolysis, TAG (Triglycerides) AbstrakMinyak Digliserida/Diacylglycerol  (DAG) adalah senyawa hasil  ikatan  kimia  antara g/iserol dengan 2 buah asam lemak bebas yang mengikuti jalur metabolik yang khas dan berbeda dengan jenis minyak trigliserida sehingga tidak menyebabkan penimbunan lemak dalam tubuh. Penelitian ini bertujuan untuk mendapat bukti eksperimental dari metode Archer-Daniels-Midland (2002), mengetahui pengaruh rasio mol reaktan dan waktu reaksi terhadap perolehan DAG dari metode gliserolisis dan mendapatkan hasil  minyak goreng yang memiliki kandungan utama digliserida. Proses sintesa digliserida dalam penelitian ini dilakukan dengan reaksi gliserolisis yang menggunakan  variasi  rasio  reaktan gliserol  : TAG 1:1, 3:2, 2:1 dan 5:2. dengan dan variasi waktu 1 dan 3 jam. Sintesa ini berlangsung pada temperatur 190°C dan menggunakan katalis CH3COOK sebanyak 1% dari berat TAG yang digunakan. Hasil penelitian menunjukkan bahwa semakin lama waktu  reaksi gliserolisis, semakin tinggi jumlah mol dig/iserida yang terbentuk di dalam minyak goreng sehat. Rasia mol reaktan gliserol: trigliserida yang  menghasilkan perolehan DAG tertinggi adalah rasio 2:1 dengan waktu reaksi 3 jam, yaitu  sebesar 97, 726%-mol DAG per  mol TAG mula-mula. Semakin tinggi rasio mol reaktan gliserol : trigliserida, %-monogliserida (MAG) yang  terbentuk juga semakin  tinggi.Kata Kunci: DAG  (Digliserida), gliserolisis,  TAG (Trigliserida)
Pembuatan monogliserida Tirto Prakoso; Maria Mahardini Sakanti
Jurnal Teknik Kimia Indonesia Vol 6, No 3 (2007)
Publisher : ASOSIASI PENDIDIKAN TINGGI TEKNIK KIMIA INDONESIA (APTEKIM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/jtki.2007.6.3.5

Abstract

Monoasylglycerol (monogliserida) is an important commercial oleo chemical that oftenly used in many applications as surfactant. It is used primarily as emulsifierfor food, cosmetics, and drugs. About 75% of the total production of emulsifier are applied in food industry. Monoglyceride has relatively high economical value and has good prospect in the global market. This time the local demand of the monoglyceride are mostly puljilled by importing from other countries. Monoglyceride are commonly produced by consumeablefat or oil glyserolysis, but it also can be obtainedfrom fatty acids esterification using glyserol with or without product refinery. Some sources that can be used in syntesis process of monoglyceride are coconut oil,palm oil, soybean oil, corn oil, sunflower seed oil, and other vegetable oil. The monoglyceride production that has been done in this research has applied Feuge and Bailey's Method (1946) which is syntesizing monoglyceride throught reaction rute of palm oil glycerolysis and using base-catalist ofNaOH 0,1%-w. The glycerolysis reaction held at 200°C. The research parameters are glycerol reactant to triglyceride ratio and reaction time. The ratio of glycerol reactant to triglyceride varied in 2:1, 3:1 and 4:1. While the reaction time varied in 1, 3 and 4 hours. The observed responsfor every parameters are glycerol conversion and monoglyceride yields. The optimum glycerolysis reaction time that has been determined.from the experiment were 3 hours. Thisfact was showed by the highest yield of alfa monoglyceride in monoglyceride product (23,511 %-w) with mole ratio of triglyceride : glycerol as 1:3 and yield as 23,5%. The highest glycerol content has been obtained on product with reation time of3 hours with mole ratio of triglyceride: glycerol as 1:4 (85,34 %-berat).Keywords: Glycerolysis, Monoglyceride, TriglycerideAbstrakMonoasilgliserol (monogliserida) merupakan senyawa kimia penting oleo kimia yang digunakan dalam banyakaplikasi sebagai surfaktan, terutama sebagai pengemulsi dalam makanan, kosmetik dan farmasi. Secara keseluruhan, kelompok surfaktan ini sangat penting terutama digunakan dalam industri makanan dengan konsumsi 75% dari total produksi pengemulsi. Monogliserida mempunyai nilai ekonomi yang relatif tinggi dan mempunyai prospek pasar yang cerah. Saat ini kebutuhan monogliserida dalam negeri masih banyak yang diperoleh dari impor. Monogliserida biasanya diproduksi melalui gliserolisis lemak atau minyak yang dapat dimakan, tetapijuga dapat diperoleh dari esterifikasi asam lemak dengan gliserol dengan atau tanpa pemurnian produk. Sumber yang digunakan dalam proses sintesa monogliserida dapat berupa minyak kelapa, minyak kelapa sawit, minyak kedelai, minyak jagung, minyak bunga matahari dan minyak nabati lainnya. Penelitian yang dilakukan merupakan penerapan metode Feuge dan Bailey (1946) yaitu sintesa monogliserida melalui rute reaksi gliserolisis minyak goreng sawit dan menggunakan katalis basa NaOH 0,1%-berat. Reaksi gliserolisis tersebut berlangsung pada temperatur 200°C. Parameter percobaan yang divariasikan adalah rasio reaktan gliserol: trigliserida yaitu 2:1, 3:1, dan 4:1. Parameter lain yang divariasikan adalah panjang waktu reaksi yaitu 1jam, 3jam dan 4jam. Respon yang diamati dalam setiap variasi adalah konversi gliserol dan perolehan monogliserida. Waktu reaksi gliserolisis yang optimum adalah 3jam, hal ini ditunjukkan dengan perolehan alfa monogliserida yang paling banyak dalam produk monogliserida (23,511 %­ berat) dengan perbandingan rasio mol trigliserida: gliserolyaitu 1:3 danyield sebesar 23,5%. Konversi gliserol tertinggi terdapat pada produkdengan waktu reaksi 3jam dengan perbandingan mol trigliserida: gliserol yaitu 1:4 (85,34 %-berat). Kata kunci: Gliserolisis, Monogliserida, Trigliserida
Produksi Metil 12-Hidroksistearat via Proses Hidrogenasi Ester Minyak Jarak Indra G. Pasaribu; Arry K. Rizky; Mario C. Gultom; Retno G. Dewi; Tirto P. Prakoso; Johnner P. Sitompul
Jurnal Teknik Kimia Indonesia Vol 18, No 1 (2019)
Publisher : ASOSIASI PENDIDIKAN TINGGI TEKNIK KIMIA INDONESIA (APTEKIM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/jtki.2019.18.1.2

Abstract

bstrak. Minyak jarak kaliki (Ricinus communis L.) merupakan salah satu bahan baku terbarukan yang banyak diaplikasikan di berbagai industri kimia. Salah satu dari turunan minyak jarak kaliki yaitu metil 12-hidroksistearat merupakan metil ester yang memiliki manfaat dalam berbagai jenis industri, khususnya industri pelumas. Makalah ini membahas produksi metil 12-hidroksistearat via hidrogenasi ester minyak jarak dalam reaktor mini-pilot. Makalah ini membahas kondisi optimum proses hidrogenasi dari metil ester risinoleat dengan melakukan variasi terhadap tekanan dan temperatur operasi. Tekanan dan temperatur operasi proses hidrogenasi divariasikan pada rentang 2-4 bar dan 150-210℃. Diperoleh produk hidrogenasi metil ester risinoleat dengan konsentrasi massa metil 12-hidroksistearat mencapai 61,28% dan angka iodin 23,84. Peningkatan temperatur dan tekanan operasi meningkatkan konversi metil 12-hidroksistearat dan menurunkan angka iodin. Pada rentang variasi kondisi, kondisi operasi optimum untuk proses ini adalah temperatur 210℃ dan tekanan 4 bar. Penambahan waktu reaksi hidrogenasi selama 3 jam menghasilkan penurunan angka iodin hingga mencapai 9,82 dan bentuk fisik seperti mentega. Kata kunci: angka iodin, hidrogenasi, metil 12-hidroksistearat, metil ester risinoleat, minyak jarak kaliki. Abstract. Production of Methyl 12-Hydroxystearate through the Hydrogenation Process of Castor Oil Esters. Castor oil (Ricinus communis L.) is one of renewable raw materials widely applied in various chemical industries. One of the castor oil derivatives is methyl 12-hydroxistearate, a methyl ester fatty acid which has been applied in various industries especially lubricants industry. This paper discusses the methyl ester production of methyl 12-hydroxystearate from castor oil via hydrogenation of ester of castor oil in a mini-pilot reactor. The purpose of this study is to determine the optimum operating condition of the hydrogenation process of the ricinoleic acid methyl ester by varying operating pressure and temperature. The operating pressure and temperature of the hydrogenation process were varied in the range of 2-4 bar and 150-210℃. The experimental results show that the hydrogenation process of ricinoleic acid methyl ester produces methyl-12-hydroxistearate with concentration up to 61.28%-wt and Iodine Value of 23.84. Higher operating temperature and pressure increase the conversion of methyl 12- hydroxistearate and reduce the iodine value. Further, the optimum operation condition for this process is at 210℃ and 4 bar. Increasing reaction time for about 3 hours results in a significant reduction of iodine value up to 9.82. Keywords: castor oil, hydrogenation, iodine number, methyl 12-hidroxystearate, methyl ester ricinoleic. Graphical Abstract