Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : VALENSI

Synthesis of Mn(II) Complexes-Carboxymethyl Chitosan Schiff Base Salicylaldehyde and Antibacterial Activity Ismiyarto Ismiyarto; Niken Windi Saputri; Liswinda Zafirah Rahmatia; Purbowatiningrum Ria Sarjono; Ngadiwiyana Ngadiwiyana; Nor Basid Adiwibawa Prasetya; Damar Nurwahyu Bima
Jurnal Kimia Valensi Jurnal Kimia VALENSI Volume 7, No. 1, May 2021
Publisher : Syarif Hidayatullah State Islamic University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jkv.v7i1.19866

Abstract

The development of compounds with a better antibacterial activity is highly needed. One way to achieve this is by modifying the structure of the compound using chitosan as a starting material, because of its abundant natural source in Indonesia, its biodegradable properties, and its structure where free amines are present. This study aims to obtain  Mn(II) -Carboxymethyl Chitosan Schiff Base-Salicylaldehyde complex to increase its antibacterial activity against Staphylococcus aureus (Gram positive) and Escherichia coli (Gram negative). Schiff Base carboxymethyl chitosan-salicylaldehyde was synthesized from carboxymethyl chitosan with salicylaldehyde. Next, the Schiff Base Carboxymethyl Chitosan-Salicylaldehyde was complexed with MnCl2.4H2O and then characterized by FTIR, UV-Vis Spectrophotometer, and AAS and tested for antibacterial activity with the disc diffusion method against Staphylococcus aureus and Escherichia coli. The product of Carboxymethyl Chitosan Schiff Base-salicylaldehyde is a brownish yellow solid with a yield of 64% (w/w) and has antibacterial activity against Staphylococcus aureus (clear zone diameter 11 mm) and Escherichia coli (clear zone diameter 13 mm). The product of Mn(II) Complexes-Carboxymethyl Chitosan Schiff Base-salicylaldehyde is a black solid with a yield of 59% (w/w) and has antibacterial activity against Staphylococcus aureus (clear zone diameter 13 mm) and Escherichia coli (clear zone diameter 17 mm).
Synthesis of Carboxylated Chitosan Amide Using Some Cyclic Anhydride and Their Activities as Antifungal Ismiyarto, Ismiyarto; Mumtazati, Qonita; Pandelaki, Elmi Christi Julia; Fachriyah, Enny; Ngadiwiyana, Ngadiwiyana; Sarjono, Purbowatiningrum Ria; Prasetya, Nor Basid Adiwibawa
Jurnal Kimia Valensi Jurnal Kimia VALENSI Volume 9, No. 2, November 2023
Publisher : Syarif Hidayatullah State Islamic University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jkv.v9i2.35244

Abstract

Chitosan is a natural polymer that has antifungal activity. It is necessary to modify chitosan into its derivatives to increase its activity. One modification of chitosan that has the potential to be developed as an antifungal is carboxylated chitosan amide because this chitosan derivative contains a carboxylic group and is more hydrophilic. This research aims to synthesize chitosan amide carboxylate using several cyclic anhydride compounds and test its antifungal activity against Aspergillus flavus. The cyclic anhydrides used in this research are maleic anhydride and phthalic anhydride. In the initial stage of chitosan amide carboxylate synthesis, reaction optimization was carried out at varying temperatures of 25, 50, and 72oC for 7 hours. Compound characterization was carried out using FTIR and UV-Vis spectrophotometry. The disc diffusion method tested the chitosan amide carboxylate product for its antifungal activity against Aspergillus flavus. The optimal MCA (Maleoyl Chitosan Amide) product is (MCA_50), synthesized at a reaction temperature of 50oC. Under these optimal reaction conditions, PCA_50 (Pthaloyl Chitosan Amide) was successfully synthesized to produce a brownish-yellow solid with a yield of 46.1% (w/w) and a degree of substitution (DS) of 41.93%. The diameter of the inhibition zone against Aspergillus flavus for PCA_50 was 30 mm at the 12th hour of observation. The product (PCA_50) has better antifungal activity than chitosan and MCA_50.
Isolation of Endophytic Pseudomonas Strains from Papaya Leaves and Their Extracellular Enzyme Production and Antioxidant Profile Sarjono, Purbowatiningrum Ria; Choirunnisa, Nur Fadilla; Triwijayanti, Yunita; Salsabila, Salsabila; Asy’ari, Mukhammad; Ngadiwiyana, Ngadiwiyana; Ismiyarto, Ismiyarto; Prasetya, Nor Basid Adiwibowo; Andriani, Yosie
Jurnal Kimia Valensi Jurnal Kimia VALENSI, Volume 11, No. 1, May 2025
Publisher : Department of Chemistry, Faculty of Science and Technology Syarif Hidayatullah Jakarta State Islamic University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jkv.v11i1.40921

Abstract

Endophytic bacteria, symbiotic microorganisms residing in plant tissues, produce bioactive compounds similar to host plants, such as antioxidants. These antioxidants are crucial in combating free radicals linked to degenerative diseases. This study isolates and characterizes two endophytic bacterial strains from papaya leaves, exploring their enzymatic and antioxidant activities. Two isolates of endophytic bacteria from papaya leaves were obtained, F1-A and F1-B. F1-A endophytic bacteria are types of monobacilli, Gram-positive bacteria. F1-B endophytic bacteria are types of Bacilli. Using 16S rRNA analysis, both isolates were predicted to belong to the Pseudomonas bacterial strain. Research on optimizing their growth under various temperatures and pH conditions showed that both isolates grow best at 37°C. F1-B provides a better opportunity as a source of industrial enzymes because it can excrete amylase, urease, cellulose, and protease enzymes compared to F1-A, which can only produce amylase and protease enzymes. Nevertheless, F1-A can act as a potent antioxidant with an IC50 of 34.18 ppm compared to F1-B, which has an IC50 value of 292.31 ppm. The IC50 value of the F1-A isolate was not much different from the IC50 of quercetin, which was 12.50 ppm. The ability of F1-A as an antioxidant is also influenced by the results of phytochemical screening, which can contain more secondary metabolites than F1-B. These results highlight the potential of Pseudomonas strains as sources of industrial enzymes and natural antioxidants, warranting further investigation.