Nazruddin Safaat
Teknik Informatika UIN SUSKA Riau

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Pengembangan Aplikasi Pendeteksi Daging Sapi dan Babi Menggunakan Deep Learning Arsitektur EfficientNet-B6 Berbasis Android Pangestu, Yoga; Sanjaya, Suwanto; Jasril; Agustian, Surya; Safaat, Nazruddin
Jurnal Informatika Ekonomi Bisnis Vol. 7, No. 2 (June 2025)
Publisher : SAFE-Network

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37034/infeb.v7i2.1195

Abstract

The advancement of digital technology has generated a demand for applications that assist the public in ensuring the halal status of food products, particularly in distinguishing between beef and pork. This study aims to develop an Android-based application for detecting beef and pork using Deep Learning methods with the EfficientNet-B6 architecture, employing the eXtreme Programming software development approach. The image classification model utilizes a Convolutional Neural Network architecture integrated into a Python-based server, while the user interface is developed with Java in Android Studio. System testing was conducted using black-box methods on several Android devices, with varying room conditions and meat types. The results show that the application can classify meat with an accuracy of 66.7%, considering room conditions such as light and dark environments, and meat types including fatty and non-fatty. This application provides fast response times and a user-friendly interface. This application is expected to enable users to independently and efficiently verify the halal status of meat, thereby supporting the needs of Muslim consumers in the digital era.
Pengembangan Aplikasi Pendeteksi Daging Sapi dan Babi Menggunakan Deep Learning Arsitektur EfficientNet-B6 Berbasis Android Pangestu, Yoga; Sanjaya, Suwanto; Jasril; Agustian, Surya; Safaat, Nazruddin
Jurnal Informatika Ekonomi Bisnis Vol. 7, No. 2 (June 2025)
Publisher : SAFE-Network

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37034/infeb.v7i2.1195

Abstract

The advancement of digital technology has generated a demand for applications that assist the public in ensuring the halal status of food products, particularly in distinguishing between beef and pork. This study aims to develop an Android-based application for detecting beef and pork using Deep Learning methods with the EfficientNet-B6 architecture, employing the eXtreme Programming software development approach. The image classification model utilizes a Convolutional Neural Network architecture integrated into a Python-based server, while the user interface is developed with Java in Android Studio. System testing was conducted using black-box methods on several Android devices, with varying room conditions and meat types. The results show that the application can classify meat with an accuracy of 66.7%, considering room conditions such as light and dark environments, and meat types including fatty and non-fatty. This application provides fast response times and a user-friendly interface. This application is expected to enable users to independently and efficiently verify the halal status of meat, thereby supporting the needs of Muslim consumers in the digital era.
Perbandingan Performa Metode Klasifikasi Teks Multilabel Hadis Terjemahan Bukhari Menggunakan Support Vector Machine dan Long Short Term Memory: Performance Comparison of Multilabel Text Classification Methods on Translated Hadiths of Bukhari Using Support Vector Machine and Long Short Term Memory Ramadhani, Aulia; Safaat, Nazruddin; Agustian, Surya; Iskandar, Iwan; Sanjaya, Suwanto
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 3 (2025): MALCOM July 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i3.2051

Abstract

Hadis merupakan sumber hukum kedua dalam Islam, dan salah satu kitab hadis yang paling dikenal adalah Shahih al-Bukhari. Untuk mendukung pemahaman dan pengamalan yang tepat, hadis perlu diklasifikasikan secara akurat. Mengingat satu hadis dapat mengandung lebih dari satu informasi, pendekatan klasifikasi multilabel menjadi sangat relevan. Penelitian ini bertujuan untuk memberikan kontribusi dalam bidang klasifikasi teks dengan mengeksplorasi kombinasi metode dan parameter yang optimal untuk klasifikasi multilabel hadis. Hasil penelitian menunjukkan bahwa Support Vector Machine (SVM) memberikan performa terbaik pada label Larangan dengan Macro F1-score sebesar 82,57%, melalui kombinasi SVM + TF-IDF menggunakan kernel = linear, parameter C (regularization parameter) = 1 tanpa stopword removal dan tanpa balancing. Sementara itu, Long Short Term Memory (LSTM) juga unggul pada label Larangan dengan Macro F1-score 82,66% pada kombinasi parameter Epoch = 20, Dropout = 0.5, Dense = 128 dan Batch Size = 64 tanpa stopword removal dan tanpa balancing kombinasi ini juga menghasilkan nilai Hamming Loss terendah sebesar 10,452%, yang lebih baik dibandingkan dengan penelitian sebelumnya serta menunjukkan bahwa LSTM terbukti lebih efektif secara keseluruhan dengan penyetelan parameter yang tepat. Penelitian ini juga berkontribusi dalam peningkatan kualitas data dengan melengkapi matan hadis yang digunakan, sehingga menghasilkan performa klasifikasi yang lebih baik.