Claim Missing Document
Check
Articles

Found 6 Documents
Search

Monitoring Oxygen Concentration and Humidity Parameters of Bubble CPAP Based on IoT Puspitasari, Ratna Ika; Titisari, Dyah; Lusiana, Lusiana; Lamidi, Lamidi
Jurnal Teknokes Vol. 16 No. 2 (2023): June
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Existing Bubble Continuous Positive Airway Pressure (CPAP) devices used in neonatal care. Specifically, the lack of digital result display and monitoring capabilities for oxygen concentration and humidity parameters is identified as a major issue. This study aims to address the shortcomings of existing Bubble Continuous Positive Airway Pressure (CPAP) devices used in neonatal care by designing a monitoring system for oxygen concentration and humidity parameters. The lack of digital result display and monitoring capabilities for oxygen rate, concentration, temperature, and humidity necessitates an improved solution. The proposed system utilizes Internet of Things (IoT) technology, allowing remote monitoring by healthcare professionals. Oxygen concentration is detected using the OCS-3f sensor, and humidity is measured with the DHT22 sensor. Data from these sensors are processed by the ESP32 microcontroller and transmitted to the https://thinger.io site via built-in Wi-Fi. The monitoring tool ensures accurate measurements between 21% to 95% oxygen concentration, with a maximum error of 4.6% and a minimum error of 0.04%. This high accuracy enhances the reliability of the CPAP bubble device for oxygen therapy. The study's significance lies in its contribution to neonatal care, offering a real-time monitoring system that facilitates prompt diagnosis and treatment. By integrating IoT and telegram notifications, healthcare professionals can remotely monitor and respond to the baby's condition, improving overall care quality. This innovative tool holds promise in enhancing neonatal care, ensuring optimal oxygen therapy, and supporting the well-being of infants receiving CPAP bubble therapy. Implications of this study are promising in terms of improving neonatal care, enhancing the reliability of CPAP devices, and leveraging technology to facilitate better healthcare practices for the most vulnerable population: premature and critically ill infants.
Analysis of the Effect of Red LED and Infrared Flip Flop Frequency on SpO2 Measurement Accuracy T P, Moch Prastawa Assalim; Titisari, Dyah; Prakoso, Bagas Angger; Caesarendra, Wahyu
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 4 No. 2 (2022): May
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i2.145

Abstract

Oxygen saturation is a vital parameter for the early detection of advanced oxygen deficiency. Spo2 is a tool that measures the amount of oxygen in the blood non-invasively. This equipment consists of ophotodiodeiode as a sensor as well as red and infrared LEDs with a flip flop driver circuit that has a certain frequency. In this case, several research projects and equipment on the market have various flip flop frequencies. This research aims to find the best frequency setting value for red and infrared led drivers on SpO2 devices. In this research, a SpO2 that can be adjusted with a flip flop frequency of 400 Hz to 1400 Hz was designed. The SPO2 reading from the sensor is presented on the OLED LCD panel using Arduino Mega as a data processor from the driver frequency output controller. Frequency adjustment for sensor drivers is also at 400 Hz to 1400 Hz. This tool was further used to measure the frequency variation of the flip flop. The measurement results on the subject's finger were then compared with the results of the standard SpO2 tool to see the effect of the frequency value on the level of accuracy of the tool. The results of the comparison data processing showed that the largest error of 0.35% occurred in the SPO2 measurement using the 600 Hz sensor frequency driver, and the smallest error value of 0.07%, occurred in the use of the driver frequency at 1400Hz. These results can be used in the initial design of the production of SpO2 equipment, the higher the frequency, the more accurate it will be. This study only discusses the frequency, whereas the intensity parameters of the red and infrared LEDs also vary.
Analysis of the Accuracy of Thermocouple Sensors at the Incubator Calibrator Laboratory Equipped with Internet of Thing-Based Data Storage Prastyadi, Candra; Irianto, Bambang Guruh; Ariswati, Her Gumiwang; Titisari, Dyah; Nyatte, Steyve; Misra, Shubhrojit
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 4 No. 4 (2022): November
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i4.158

Abstract

Laboratory incubator is a tool used to incubate a breed. This incubator provides optimum temperature conditions for microorganisms to grow. It has a temperature regulator so that the temperature can be adjusted according to the breed incarnated. In this case, incubator worked like the hot-dry system of ovens. The purpose of this study was to conduct testing and analysis on the accuracy of thermocouple sensors using incubator media in laboratory incubator calibrator tools. The contribution of the research was to know the level of accuracy of the right sensor for sensing the temperature in the laboratory incubator. The main designed tool consisted of 8 MAX6675 standards, 8 K thermocouple, Arduino-Mega, and SD Card Standards. The temperature of the incubator device, in this case, was measured by the K thermocouple sensor. The sensor system had 8 channels that serve to measure the temperature at each incubator point. The temperature data were further stored in the SD card to analyze the data and the data can be processed into the form of a graphic. Benchmarking was done using a data logger temperature tool. This was done to make the designed tool results under the standards tool. After comparing between the tool designed and the standard tool obtained the largest error value of 3.98% in channel T6 at the temperature of 35°C with ordinary incubator media, while the smallest error in ordinary incubator media was at the point T6 at temperature of 37°C by 0.06%. Meanwhile, in the fan incubator, at the temperature of 35oC, had the largest error of 2.98%, while the smallest error was 0.86%. The conclusion of this study is that the tool designed could work well in measuring the temperature of the incubator, as well as the system for storing the data reading using the SD card.
Analysis of Temperature Distribution in Blood Banks Through Storage of Measurement Results with IoT Monitoring in the Blood Donation Unit of Indonesian Red Cross Surabaya Wardhana, Farisy Azis Satria; Maghfiroh, Anita Miftahul; Titisari, Dyah; Sumber, Sumber; Abdullayev, Vugar
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 5 No. 2 (2023): May
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v5i2.170

Abstract

Temperature or temperature is an indicator of the degree of heat of an object. Cold chain or cold chain is a supply chain system that considers the temperature level in the process. Cold chain to keep frozen or chilled products in an environment with a certain temperature during production, storage, transportation, processing and sales. This is intended to maintain product quality. The purpose of this study was to determine the temperature distribution in the Blood bank at Blood Transfusion Unit Indonesian Red Cross Surabaya City which was used for storage of blood products. By using the ESP32 system and the DS18B20 temperature sensor which will then be monitored via IoT, it will make it easier for users to monitor. The results of these measurements will be stored in a micro SD card for analysis. The data is processed by Non-Parametric Test resulting in an interpretation that the temperature of each shelf is different due to the difference in the location of the sensor placement. The temperature difference is also influenced by the pattern of use and the process of heat transfer from the bottom to the top of the shelf. This research was considered successful with the result of the highest temperature distribution being 3°C and the lowest being 2°C. The location of these racks can be useful in determining day-to-day monitoring measuring points. This value has met the standard for storage of blood products, which is in the range of 2°C-6°C.
Waterbath Calibrator with Nine Channels Sensor Rofi’i, Mohammad; Syaifudin, Syaifudin; Titisari, Dyah; Utomo, Bedjo
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 1 No. 1 (2019): August
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v1i1.235

Abstract

There is one fundamental thing that says electrosurgery is dangerous because of the lack of understanding of the monopolar technology in ESU can produce a larger current and will spread more widely throughout the body compared to bipolar. So in this study, the objective of this research is to develop a monopolar electrosurgery unit equipped with an additional mixed-mode and also equipped with a power selection. The contribution of this research is designing power management and adding several modes for the surgical process. The module is calibrated using the ESU Analyzer. This module comes with a choice of low, medium, and high power. And there are also several additional modes including blend 1 and blend 2. After the measurement, the value of the voltage at the inverter input shows the value for blend 1 mode, low 80 V with an error of 0.84%, Medium 90 V with an error of 0.84%, High 104 V with an error of 0.81. %. The measurements show an error of less than 1% for Blend 1 and also in Blend 2, while a cut is less than 3%. The results of this study can be implemented to minimize errors due to a lack of power regulation and mode selection during operation for electrosurgery equipment
A Centrifuge Calibrator Based on Personal Computer Equipped with Data Processor Asadina, Habliya; Hamzah, Torib; Titisari, Dyah; Utomo, Bedjo
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 1 No. 1 (2019): August
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v1i1.238

Abstract

Calibration is an activity to determine the conventional truth of the value of the appointment of a measuring instrument by comparing traceable standards to national and international standards for measurement or international units and certified reference materials. The purpose of this study is to develop a system of efficient and practical centrifuge calibrators by sending the calibration results directly via Bluetooth to a PC. The main series of centrifuge calibrators are Arduino modules, laser sensors, and Bluetooth. The high low signal is obtained from the reflection of the laser beam aimed at the reflector point on the centrifuge plate, processed in the Arduino module and displayed on the LCD, the calibration results can be directly seen in the Delphi program. The design of this module is also equipped with a Bluetooth transmitter to send data to a PC. This module can be used in medical equipment calibration laboratories. Based on the results of testing and data collection on the 8 Tube centrifuge with a Lutron Tachometer ratio, the error value was 0.0136%. After planning, experimenting, making modules, testing modules, and collecting data, it can be concluded that the tool "centrifuge calibrator equipped with PC-based data processors" can be used and according to planning because the fault tolerance does not exceed 10%.