Yogi Sirodz Gaos, Yogi Sirodz
Mahasiswa Program Ddoktoral, Program Studi Ilmu Keteknikan Pertanian Sekolah Pascasarjana IPB

Published : 11 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 11 Documents
Search

Pengaruh Perubahan Material CuNi dengan Stainless Steel SA 213 TP304 terhadap Performansi Air Cooler Generator di PLTA Saguling Gaos, Yogi Sirodz; Widiawati, Candra Damis
AME (Aplikasi Mekanika dan Energi): Jurnal Ilmiah Teknik Mesin Vol. 1 No. 1 (2015)
Publisher : Universitas Ibn Khaldun Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (578.619 KB) | DOI: 10.32832/ame.v1i1.101

Abstract

Alat penukar kalor merupakan peralatan yang mampu menukar kalor dari fluida panas ke fluida dingin. Parameter yang paling kritis dalam desain alat penukar kalor adalah overall thermal conductivity. Jika overall thermal conductivity lebih besar, maka unjuk kerja alat penukar kalor menjadi lebih baik, dimana kondisi tersebut dipengaruhi oleh konduktivitas termal pipa dan material sirip. Material yang paling banyak digunakan alat penukar kalor adalah copper, karena konduktivitas termalnya paling besar sekitar 385 W/moC. Akan tetapi untuk kondisi lainnya, copper nickel (CuNi) pipa, Titanium pipa dan pipa stailess steel AISI 304 yang biasanya digunakan untuk fluida bersifatkorosif. Analisis konduktivitas termal pipa menggunakan tiga metode dan perbedaan masukan data, yaitu 1)perhitungan sederhana; pendingin generator dengan udara di PLTA Saguling, 2) Perhitungan Shell and Tube; pendingin minyak pelumas mesin SWD 6TM410RR, 3) Perhitungan Guentner;pendingin air SWD 6TM410RR. Analisis perhitungan sederhana, shel and tube dan Guentner secara berturut-turut menghasilkan: kapasitas kalor fluida panas masing-masing, Qhot= 433 kW, 305 kW and 510 kW; kapasitas pendinginan udara pendingin pada pipa CuNi, Qhe= 433 kW, 460 kW and 603.62kW; kapasitas pendinginan udara pendingin menggunakan pipa AISI 304, Q’he = 432 kW, 454 kW and 594.35 kW; dan kapasitas pendinginan turun sebesar 0,24%, 1,30% and 1,54%. Berdasarkan perhitungan shell and tube dengan Guentner, kapasitas pendinginan udara menggunakan pipa stailesssteel AISI 304 harus dibalik menjadi 20% untuk mengantisipasi konduktivitas termal yg rendah dari pipa stailess steel AISI 304. Sehingga direkomendasikan untuk menambah luas permukaan sentuh kisaran 20%, sehingga kapasitas pendinginan udara yg menggunakan pipa stailess steel AISI 304menjadi 518 kW.
ANALISIS KINERJA GASIFIER UNGGUN TETAP ALIRAN KE BAWAH MENGGUNAKAN UMPAN KAYU UNTUK MESIN PEMBANGKIT LISTRIK TENAGA GAS Gaos, Yogi Sirodz; Putra, Hanang Agna Pradana; Bahry, Syamsul
AME (Aplikasi Mekanika dan Energi): Jurnal Ilmiah Teknik Mesin Vol. 1 No. 1 (2015)
Publisher : Universitas Ibn Khaldun Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (548.194 KB) | DOI: 10.32832/ame.v1i1.104

Abstract

PERFORMANCE ANALYSIS OF FIXED BED GASIFIER USING FLOW DOWN PINECHIPWOOD FOR GAS ENGINE POWER GENERATION. In recent years energy resources dwindling oil so it is necessary to replace it with renewable energy sources. Biomass is one of the renewable energy sources which has gasification technology, in which these technologies can transform wood into gas fuel (syngas).The research methodology is how to design and manufacture of; gasifier, cyclone and wet scrubber based on the needs of the gas engine performance. The apparatus for wood analysis by using Thermal Conductivity Detection (TCD) and Firing Ionization Detection (FID) to get the calorific value, proximate (containing of; moisture, ash, volatile matter and fixed carbon) and ultimate(containing of; carbon, hydrogen, nitrogen and oxygen) in the wood. Gas chromatography analyser is used to determine the syngas chemical composition and Thermocouple K-type (National Instrument) is used to obtain temperature distribution.From the test results in the data obtained in the temperature distribution in the drying zone of the gasifier at 41ºC, pyrolysis zone at 98 ºC, oxidation zone at 970 ºC and reduction zones at 63 ºC. Meanwhile, syngas temperature in the cyclone outlet is 36,8 ºC and in the wet scrubber outlet is 35,96ºC. Syngas chemical composition generated output gasifier as follows; CO=29,3%, H2=5,6%, CH4=1,03%, CO2=1,33%, and N2=47,35%, meanwhile on the output side of the cyclone; CO=28,05%, H2=4,15%, CH4= 0,44%, CO2= 1,39%, and N2= 49,61% and on the output side of the wet scrubber; CO= 25,63%, H2= 4,49% , CH4= 0,80%, CO2=1,72%, and N2= 51,01%.
Pemilihan Fluida Kerja pada Pengembangan Organic Rankine Cycle Gaos, Yogi Sirodz; Juarsa, Mulya; Marzuki, Edi; Yulianto, Muhamad
AME (Aplikasi Mekanika dan Energi): Jurnal Ilmiah Teknik Mesin Vol. 1 No. 1 (2015)
Publisher : Universitas Ibn Khaldun Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (530.311 KB) | DOI: 10.32832/ame.v1i1.106

Abstract

Studi ini menjelaskan perbandingan 3 fluida kerja yang digunakan dalam pengembangan Siklus Rankine Cycle. Menurut Tabel refrigerant yang sering digunakan, makalah ini menggunakan fluida kerja R134a, R141b dan n-penthane. Analisis menggunakan fluida kerja untuk pengembangan ORC berdasarkan kreteria termodinamika, lingkungan dan ekonomi seperti efesiensi, non-flammability,toksin rendah, tidak ada penipisan ozon dan cost yang rendah. Metode penelitian untuk analisis menggunakan software Cycle Tempo dan penentuan sifat-sifat fluida kerjanya dengan software Refprop. Hasil analisis menunjukkan bahwa efisiensi sistem adalah 8,42%, 11,79% dan 16,92% secara berturut-turut untuk R134a, R141b dan n-penthane pada temperature inlet 160oC. Sehingga dapatdisimpulkan bahawa penggunaan fluida kerja terbaik adalah fluida R134.
EFEK SUDUT KEMIRINGAN UNTAI SIMULASI SIRKULASI ALAMIAH TERHADAP RUGI TEKANAN DI SEPANJANG PIPA Gaos, Yogi Sirodz
AME (Aplikasi Mekanika dan Energi): Jurnal Ilmiah Teknik Mesin Vol. 1 No. 1 (2015)
Publisher : Universitas Ibn Khaldun Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32832/ame.v1i1.129

Abstract

EFFECTS OF SIMULATION strand tilt angle NATURAL CIRCULATION OF LOSS IN ALL THE PRESSURE PIPE. Have been made to optimize the energy utilization efficiency, performed in addition to designing up a new energy conversion devices, as well as utilize natural laws that act as natural circulation phenomena. Experimental studies conducted to understand the natural phenomenon of circulation by calculating the pressure loss based on temperature changes in the cold and the heat in the USSA strand FT-02. USSA construction consists of FT-02 components of SUS 304 pipe 1 inch in diameter, heater, cooler and expansion tank. Experimental variation is the height difference between the hot side and cold side based on the variation of the angle of the strand, which is 30o, 60o and 90o or cooler altitude of 0.275 meters, 0.476 and 0.550 meters. Outlet temperature of the heater (TH) and the outlet of the cooler temperature (TC) is used as a parameter to be measured and on-record with a time span of the experiment for 40 minutes. Experimental results and calculations using multiple correlation showed, the pressure loss will have price stability in a row bar is 0.000044, 0.000063 and 0.00021 bar bar by changing the angle of 30o, 60o and 90o, while the influence of water mass flow rate led to an increase of 0.002626 (kg / s) to 0.01487 (kg / s). The effect of the forces that affect the loss of pressure has different characteristics for each of the difference in height cooler and heater.Keywords: angle, flow rate, pressure loss
DESIGN OPTIMIZATION AND EXPERIMENTAL DATA OF LOW ENTHALPY GEOTHERMAL POWER PLANT DESIGN BY USING ORGANIC RANKINE CYCLE Gaos, Yogi Sirodz; Wicaksono, Muhammad Faisal; Rodiah, Iis
AME (Aplikasi Mekanika dan Energi): Jurnal Ilmiah Teknik Mesin Vol. 2 No. 1 (2016)
Publisher : Universitas Ibn Khaldun Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (197.672 KB) | DOI: 10.32832/ame.v2i1.319

Abstract

A lot of heat energy can be tap to produce electricity by converting the heat and enthalpy to move a steam turbine cycle, or usually known as Rankine Cycle. But steam cycle has to have a high temperature and high enthalpy, so lower temperature and lower enthalpy source such as geothermal brine water, solar thermal, and waste heat gas cannot be tap to produce electricity. These potential belongs to ORC or Organic Rankine Cycle. ORC has no need to utilized high temperature and enthalpy, it can use temperature as low as 80ºC instead of 170ºC or more. By utilizing ORC system, these sources is open to produce electricity. These days a lot of research for ORC is done either by simulation or by experiment and the source is also varied. For this case, the source is geothermal brine water. The design of ORC begins with calculating the overall ORC heat balance using Cycle Tempo. Thus the duty of preheater, evaporator, turbine, condenser, pump, and cooling tower can be obtained. Then using working fluid n-pentane, we calculate and optimized the thermal efficiency. After that, every individual equipment is designed and calculated by using HTRI. Design optimization which had been obtained then used as reference to do the experiment. Unfortunately, the data from the latest experiment showed that the temperature from the geothermal brine water has not met requirement yet. Therefore, further experiment has to be done with some improvement to the system.
ANALISA COOLING SISTEM GE FRAME 9 PLTG SICANANG 120MW Gaos, Yogi Sirodz; Widiawati, Candra Damis
AME (Aplikasi Mekanika dan Energi): Jurnal Ilmiah Teknik Mesin Vol. 2 No. 2 (2016)
Publisher : Universitas Ibn Khaldun Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (760.128 KB) | DOI: 10.32832/ame.v2i2.355

Abstract

Power plant is an industrial facility for the generation of electric power. Mechanical power is produced by a heat engine that transforms thermal energy, often from combustion of a fuel, into rotational energy for generator, than produces electric power. On all the power plant is operated in high temperature and high pressure, so it needed cooling system to prevent from over heating, if not the power plant system will be damaged. PLTG Sicanang produced 120MW electric power; the cooling systems consist of generator cooler and turbin cooler. Design input data was temperature inlet and outlet water, volumerate water, and ambient temperature. Design performance of generator cooler 1) capacity 2450 kW 2) water inlet 46.5oC and water outlet 40oC 3) water volume flow 330 m3/h 4) air volume flow 312m3/s. Design performance of turbin cooler 1) capacity 1570 kW 2) water inlet 56.3oC dan water outlet 46.5oC 3) water volume flow 140 m3/h 4) air volume flow 312m3/s. The actual performance for 50 MW load 1) generator cooler; water inlet 43oC, water outlet 40oC, water volumerate 330 m3/h, air volumerate 182m3/s 2)turbin cooler water inlet 47oC, water volumerate 140 m3/h, air volumerate 182m3/s. 100 MW load 1) generator cooler; water inlet 45oC, water outlet 40oC, water volumerate 330 m3/h, air volumerate 208m3/s 2)turbin cooler water inlet49oC, water volumerate 140 m3/h, air volumerate 208m3/s. The generator cooler has been designed with reverse surface 25% which was capable to cooling heat 3066 kW, where as the turbin generator has been designed with reverse surface 17% which was capable to cooling heat 1850 kW. The reverse surface was designed to anticipate hinger ambient temperature and over load.
REVERSE ENGINEERING OIL COOLER DOUBLE TUBE PLTA JATILUHUR Gaos, Yogi Sirodz; Damis Widiawati, Candra
AME (Aplikasi Mekanika dan Energi): Jurnal Ilmiah Teknik Mesin Vol. 3 No. 1 (2017)
Publisher : Universitas Ibn Khaldun Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (596.839 KB) | DOI: 10.32832/ame.v3i1.463

Abstract

Double tube heat exchanger is one of the modifications of shell and tube, which use as transformer cooler in power plant system AT PLTA Jatiluhur, Purwakarta, Jawa Barat. It has double tube, the outer contacts with the oil and the inside one contacts with water as cooling medium. One of the benefits of this type can reduce explosion risk of the transformer, because the warning system will be on when there is leakage at inside tube, so water and oil will not mix. But this type needs cost more expensive than the single one. ,Design optimization was using reverse engineering. The dimensions are 339.6 mm inner shell diameter, outer tube dimension 15mmOD, 1mmThickness, 2208mmLength, inside tube dimension 13mmOD, 1.2mmThickness, 2208mmLength, and 124 pcs in each. The performance tests of the reverse engineering at 23.23 MW were; 27.4oC/31oC water in/out, 41.5oC/38.8oC oil in/out, oil flow rate 2.92 kg/s, 10.94oC log mean temperature difference, and temperature work of transformer 41.1oC. Using reverse engineering the work temperature of transformer at 28 MW was 60oC when using original equipment the work temperature of transformer at 26 MW was 80oC. Design of reverse engineering increased cooling capacity 16% and only 71.43% from OEM.
ANALISIS KAPASITAS DAN KEKUATAN KONSTRUKSI BLADDER TANK PADA SIRKULASI AIR PANAS SISTEM ORC SOLAR KOLEKTOR R-134a Novianto, Irsan; Gaos, Yogi Sirodz; Alkindi, Hablinur
AME (Aplikasi Mekanika dan Energi): Jurnal Ilmiah Teknik Mesin Vol. 4 No. 2 (2018)
Publisher : Universitas Ibn Khaldun Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (676.179 KB) | DOI: 10.32832/ame.v4i2.1536

Abstract

This study focused on component in the Organic Rankine Cycle (ORC), Bladder Tank. The calculationmethod is based on the calculation stage of plate thickness to withstand the pressure caused by thecirculation of the ORC system. The material used is SA 106 with 12mm thickness, Shell length 600mm,270mm inner diameter and 95mm Head length. From the calculation results obtained maximumpressure on Shell = 253,8385 psi (17,7 bar g) and pressure at Head equal to = 249,6983 psi (17,2 barg). Bladder Tank Capacity of 38055622,5 mm³ (38,0556 Liter). From result of Pressure Drop simulationgot Head loss equal to = 0,00000066 m.
KARAKTERISASI TEKANAN AIR PANAS PADA ORGANIC RANKINE CYCLE BERBASIS SOLAR KOLEKTOR PIPA SIRIP JENIS LONGITUDINAL Yanto, Dwi; Gaos, Yogi Sirodz; Alkindi, Hablinur
AME (Aplikasi Mekanika dan Energi): Jurnal Ilmiah Teknik Mesin Vol. 5 No. 1 (2019)
Publisher : Universitas Ibn Khaldun Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (269.084 KB) | DOI: 10.32832/ame.v5i1.2326

Abstract

Sistem Organic Rankine Cycle (ORC) Kolektor Surya menggunakan air sebagai fluida dan sistem sirkulasi air panas. Pipa sirip jenis longitudinal digunakan karena jenis pipa yang sangat baik untuk aplikasi perpindahan panas. Tekanan dalam laju aliran sirkulasi air panas berpengaruh terhadap sistem ORC agar berjalan secara optimal. Oleh karena itu, dalam penelitian ini dilakukan perhitungan jumlah tekanan pada sistem sirkulasi air panas untuk mengetahui apakah terdapat head loss (mayor dan minor) yang terjadi dan faktor yang mempengaruhi terjadinya head loss pada sistem sirkulasi air panas. Dari hasil pengujian dan perhitungan dalam menganalisis tekanan pada sistem sirkulasi air panas, diperoleh data head loss mayor sebesar 3,093769m, head loss minor sebesar 2,762065 m, dan head loss pada evaporator sebesar 0,00002 m, dengan total head loss sebesar 5,855853m. Berdasarkan hasil perhitungan, penggunaan pipa sirip longitudinal pada sistem perpipaan sirkulasi air panas tidak bekerja secara optimal karena head loss yang terjadi pada pengujian ini lebih besar dari pada head loss perhitungan teoritis yakni 17m berbanding dengan 5,855853m, terdapat selisih yang cukup besar yakni sebesar 11,144147m. Faktor yang mempengaruhi terjadinya head loss pada sistem sirkulasi air panas yaitu banyaknya sambungan las pada pipa, kekasaran ekivalen pada material pipa, dan jenis material serta diameter pipa yang beragam sehingga tekanan air yang terjadi pada saat sirkulasi berubah-ubah.
DESAIN DAN UJI EKSPERIMENTAL EVAPORATOR PADA ORGANIC RANKINE CYCLE Sobar, Ade; Gaos, Yogi Sirodz; Alkindi, Hablinur
AME (Aplikasi Mekanika dan Energi): Jurnal Ilmiah Teknik Mesin Vol. 5 No. 2 (2019)
Publisher : Universitas Ibn Khaldun Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (454.439 KB) | DOI: 10.32832/ame.v5i2.2336

Abstract

Penelitian desain dan uji eksperimental evaporator pada organic rankine cycle telah dilakukan. Metode uji dilakukan berdasarkan pada perpindahan panas yang terjadi pada evaporator sistem ORC. Material tube yang digunakan adalah SA 304 dengan diameter luar tube 10mm, diameter dalam tube 7,11mm, panjang tube 1000 mm, jumlah tube 158 dengan susunan tube segi tiga, pitch tube 13 mm, dan diameter shell 200 mm, jumlah baffle 4. Dari hasil perhitungan yang dilakukan diperoleh perpindahan panas hasil pengujian sebesar 1,07 kW sedangkan perpindahan panas hasil desain sebesar 5,05 kW atau baru tercapai 21,19% perpindahan dari desain.