Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Automotive Experiences

An Overview of Physicochemical Properties and Engine Performance Using Rubber Seed Biodiesel–Plastic Pyrolysis Oil Blends in Diesel Engines Tambunan, Bisrul Hapis; Ambarita, Himsar; Sitorus, Tulus Burhanuddin; Sebayang, Abdi Hanra; Masudie, Ahmad
Automotive Experiences Vol 6 No 3 (2023)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.10136

Abstract

Rubber Seed Biodiesel (RSB) and Plastic Pyrolysis Oil (PPO) deserve to be considered as alternative fuels for diesel engines, because of their advantages such as large raw material resources, derived from free or waste feedstock and the use of plastic waste as fuel can prevent environmental pollution. Due to their almost identical densities, RSB and PPO can be mixed homogeneously. In general, the use of a mixture of RSB and petroleum diesel in diesel engines shows positive performance, both engine performance and emissions, as well as the use of mixed PPO and diesel fuel. Although RSB has a good cetane number and flash point, on the other hand, RSB also has disadvantages in its physiochemical properties, such as low oxidation stability, high acid value, low heating value, and high viscosity. Likewise, PPO has good oxidation stability, acid value, and viscosity, but the flash point, CO, and HC emissions are also bad. This article tries to describe the opportunity to mix RSB and PPO, to find the best composition between RSB and PPO which shows the best fuel physiochemical properties and engine performance.
Potential of Grocery Bags Plastic Waste as a Fuel Substitute for Fossil-Based Fuels: A Characterization Study on the Non-Catalytic Low-Temperature Pyrolysis Process Daryanto, Eka; Ampera, Dina; Matondang, Zulkifl; Simanjuntak, Janter Pangaduan; Tambunan, Bisrul Hapis; Idroas, Mohamad Yusof; Zulkifli, Nurin Wahidah Binti Mohd; Zainon, Mohamad Zamri; Riduwan, Riduwan
Automotive Experiences Vol 7 No 3 (2024)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.12099

Abstract

Currently, pyrolysis is the primary choice for addressing the significant problems caused by plastic waste. Temperature and catalysts are the main parameters in pyrolysis. However, using catalysts can become a serious problem when scaling up production capacity, as the process can become more complex and expensive due to the high cost of catalysts. Without a catalyst, the required pyrolysis temperature must be sufficiently high to achieve high-quality pyrolytic fuel oil. In this work, plastic grocery bag is pyrolyzed followed by distillation to produce a liquid similar to conventional fuel, called distillate plastic fuel. Non-catalyst and low-temperature pyrolysis was performed at a single temperature of 350 °C, followed by distillation at temperatures of 250 °C and 350 °C to determine the effect of distillation temperature on the chemical properties of the obtained distilled fuel. Elemental and composition analyses were conducted using the GCMS method. Results indicated that the chemical properties and composition of distilled plastic fuel are similar to diesel fuel with a heating value of approximately 43.362 to 44.364 MJ/kg.