Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Media Statistika

RELATIVE RISK OF CORONAVIRUS DISEASE (COVID-19) IN SOUTH SULAWESI PROVINCE, INDONESIA: BAYESIAN SPATIAL MODELING Aswi, Aswi; Mauliyana, Andi; Tiro, Muhammad Arif; Bustan, Muhammad Nadjib
MEDIA STATISTIKA Vol 14, No 2 (2021): Media Statistika
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/medstat.14.2.158-169

Abstract

The Covid-19 has exploded in the world since late 2019. South Sulawesi Province has the highest number of Covid-19 cases outside Java Island in Indonesia. This paper aims to determine the most suitable Bayesian spatial conditional autoregressive (CAR) localised models in modeling the relative risk (RR) of Covid-19 in South Sulawesi Province, Indonesia. Bayesian spatial CAR localised models with different hyperpriors were performed adopting a Poisson distribution for the confirmed Covid-19 counts to examine the grouping of Covid-19 cases. All confirmed cases of Covid-19 (19 March 2020-18 February 2021) for each district were included. Overall, Bayesian CAR localised model with G = 5 with a hyperprior IG (1, 0.1) is the preferred model to estimate the RR based on the two criteria used. Makassar and Toraja Utara have the highest and the lowest RR, respectively. The group formed in the localised model is influenced by the magnitude of the mean and variance in the count data between areas. Using suitable Bayesian spatial CAR localised models enables the identification of high-risk areas of Covid-19 cases. This localised model could be applied in other case studies.
MAKING BAYESIAN DISEASE MAPPING EASY AND INTERACTIVE: AN R SHINY APPLICATION Aswi, Aswi; Tiro, Muhammad Arif; Sudarmin, Sudarmin; Sukarna, Sukarna; Awi, Awi; Nurwan, Nurwan; Cramb, Susanna
MEDIA STATISTIKA Vol 16, No 2 (2023): Media Statistika
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/medstat.16.2.148-159

Abstract

Spatial analysis of count data is important in epidemiology and other domains to identify spatial patterns. While Bayesian spatial models are a popular approach, they do require detailed knowledge of the process for model fitting, checking, and visualising results. Although a number of R packages are available to simplify running the model, there are still complexities when checking the model. This paper aims to provide a user-friendly and interactive R Shiny web application for the analysis of spatial data using Bayesian spatial Conditional Autoregressive Leroux models. The web application is built with the integration of the R packages shiny and CARBayes. The required data are the number of cases, population, and optionally some covariates for each region. In this case, we used Covid-19 data in 2021 in South Sulawesi province, Indonesia. This application enables fitting a Bayesian spatial CAR Leroux model under several hyperpriors and selecting the most appropriate through comparing several goodness of fit measures. The application also enables checking convergence, plus obtaining and visualising in an interactive map the relative risk of disease for each region.