Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Bulletin of Computer Science Research

Implementasi Fuzzy Sugeno Berbasis IoT untuk Peringatan Kualitas Air Akuarium Ikan Mas Koki Rahman, Muhammad Taufikur; Yanto, Febi; Haerani, Elin
Bulletin of Computer Science Research Vol. 5 No. 4 (2025): June 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v5i4.627

Abstract

The manual monitoring of aquarium water quality is often ineffective due to time constraints and the potential delays in detecting critical parameter changes that can threaten fish health. This research develops a real-time water quality monitoring system for goldfish aquariums based on the Internet of Things (IoT) using the Sugeno fuzzy logic method. The system utilizes an Arduino Uno R4 WiFi microcontroller to process data from turbidity, Total Dissolved Solids (TDS), and water temperature sensors. The Sugeno fuzzy method is chosen for its ability to produce precise numerical outputs based on fuzzy rules. To assess water quality, the sensor data undergoes fuzzification, rule evaluation, implication/aggregation function application, and defuzzification stages. The measurement results are then processed in real-time and sent via WiFi connection to the Blynk application, which serves as a monitoring medium and sender of warning notifications to users when water quality falls outside safe limits, while information is also displayed on the OLED screen of the system. Water quality assessment is classified based on fuzzy output values into several condition categories: 0-20 (Very Good), 21-40 (Good), 41-60 (Fair), 61-80 (Poor), 81-100 (Very Poor). Based on the test results, the system has been proven to effectively detect and classify water quality conditions with high accuracy, as well as provide effective warning notifications. This system is expected to assist aquarium owners in maintaining optimal environmental conditions for the health of goldfish in an automatic, sustainable, and efficient manner.
Perbandingan Akurasi Arsitektur EfficientNet-B0, VGG16, dan Inception V3 Dalam Deteksi Tumor Ginjal Pada Citra CT-Scan Muhammad Fahri; Yanto, Febi; Syafria, Fadhilah; Abdillah, Rahmad
Bulletin of Computer Science Research Vol. 5 No. 4 (2025): June 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v5i4.670

Abstract

Kidney dysfunction can trigger the development of various diseases, including kidney tumors. Early detection of kidney tumors is very important to increase the effectiveness of treatment and the chances of patient recovery. The use of deep learning technology in medical image classification has become a promising approach, especially in detecting abnormalities in the kidney organ through CT-Scan images. This study compares the performance of three Convolutional Neural Network (CNN) architectures, namely EfficientNet-B0, Inception-V3, and VGG16, in detecting kidney tumors. The dataset used was obtained from the kaggle website, namely CT-scan images with normal and tumor classes and divided by a ratio of training  data and test data of 80:20. The hyperparameter used is Stochastic Gradient Descent (SGD) with a learning rate of 0.001 and 0.0001. The evaluation was carried out using a confusion matrix with metrics of accuracy, precision, recall, and F1-score . According to the test outcomes, the VGG16 model configured with a 0.001 learning rate achieved the highest classification performance, recording 99.46% accuracy, precision, recall, and F1-score.