Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : KLIK: Kajian Ilmiah Informatika dan Komputer

Analisis Sentimen Terhadap Sebuah Figur Publik di Twitter Menggunakan Metode K-Nearest Neighbor Yenggi Putra Dinata; Yusra; Fikry, Muhammad; Yanto, Febi; Cynthia, Eka Pandu
KLIK: Kajian Ilmiah Informatika dan Komputer Vol. 4 No. 6 (2024): Juni 2024
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/klik.v4i6.1904

Abstract

The development of online media, particularly through social media platforms like Twitter, has created a vast stage for various activities, including political campaigns and public opinion on public figures. When information technology advances rapidly, public opinion can be conveyed without time constraints through social media. Twitter, with its character limitations and the use of hashtags by users, is considered easier to gather information about existing opinions and sentiments. Currently, social media is widely used for communication and making friends, but also for other activities. Advertising products, buying and selling anything, including advertising political parties and campaigning for members of Congress or presidential candidates. This research focuses on sentiment analysis towards Puan Maharani, the Speaker of the Indonesian House of Representatives (DPR RI), using data from the social media platform Twitter. Twitter, as a platform that allows users to express opinions in a concise format, is used as the main source of information in this research. The K-Nearest Neighbor algorithm for sentiment analysis technique is utilized to classify individual tweets into positive or negative categories regarding views on Puan Maharani. The methods used in this research include data crawling, labeling, and data preprocessing, which involve case folding, cleaning, tokenizing, negation handling, normalization, stopword removal, and stemming. For the classification process, the K-Nearest Neighbor method, feature weighting (TF-IDF), and feature selection (thresholding) are employed, with a threshold value of 0.001. The data used comprises 9,000 tweets in the Indonesian language. The results of the testing conducted in the K-Nearest Neighbor method, using confusion matrices, with 6 different values of K (3, 5, 7, 9, 11, 13), with comparison mechanisms of 90:10, 80:20, and 70:30 achieved the highest accuracy of 90.00% with K = 11 from the comparison using the 90:10 ratio
Classification of Palm Oil Ripeness Level using DenseNet201 and Rotational Data Augmentation Nabyl Alfahrez Ramadhan Amril; Yanto, Febi; Elvia Budianita; Suwanto Sanjaya; Fadhilah Syafria
KLIK: Kajian Ilmiah Informatika dan Komputer Vol. 4 No. 6 (2024): Juni 2024
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/klik.v4i6.1937

Abstract

Indonesia is a country in Southeast Asia with the largest palm oil production in the world. Based on Indonesian Central Statistics Agency data, in 2022 Indonesia produced 46,8 million Tons of Crude Palm Oil (CPO). To produce a high-quality oil, palm oil fruit must be harvested in an optimal condition. But, even a experienced and trained person found it difficult to identify whether the fruit is ripe or raw. In this research theres two type of classification which is ripe and raw, this is because palm oil milling factory only accept pure ripe palm oil fruit and not half ripe or almost ripe. The data that is used in this reseacrh was collected from two sources, the first source is from https://www.kaggle.com/datasets/ahmadfathan/kematangansawit and the second source was collected manually by going to palm oil plantation. The total of data that is used for this research is 1000 data and 1000 augmented data. Dense Convolutional Network (DenseNet) that is used in this research is a CNN architecture that was first introduced in 2017. Compared to DenseNet121 and DenseNet169, DenseNet201 is proven to have a higher level of accuracy. The 90:10 data scheme succeeded in getting the highest accuracy with a total accuracy of 97.50% with a learning rate of 0.001 and a dropout of 0.01
Deep Learning Menggunakan Algoritma Xception dan Augmentasi Flip Pada Klasifikasi Kematangan Sawit Masaugi, Fathan Fanrita; Yanto, Febi; Budianita, Elvia; Sanjaya, Suwanto; Syafria, Fadhilah
KLIK: Kajian Ilmiah Informatika dan Komputer Vol. 4 No. 6 (2024): Juni 2024
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/klik.v4i6.1938

Abstract

Palm oil is an important commodity in Indonesia, especially as Indonesia is the highest palm oil exporting country in the world. Ripe palm fruit is marked by a change in color of the fruit from black to reddish yellow. Apart from that, immature palm fruit has a negative and significant effect on CPO production. The data collection process was carried out by directly taking pictures of palm fruit on oil palm plantations and data obtained from Kaggle. The total amount of data is 1000 images and 1000 data resulting from flip augmentation. The Xception algorithm is an algorithm in deep learning which stands for Extreme version of Inception. This combination was then proven to provide better accuracy in classifying images from a dataset. The optimizer used is the optimizer in TensorFlow, namely Adam (Adaptive Moment Estimation) using learning rate and dropout values. Images of mature and immature palm oil were classified using the Xception algorithm with augmented and without augmented data. In addition, experiments were carried out by changing the parameter values ??of learning rate to 0.1, 0.01, 0.001 and dropout to 0.1, 0.01, 0.001. It was found that the data division was (90;10) with the best accuracy reaching 95%. Test parameters carried out by trialling were proven to increase accuracy when compared to without using parameters and flip augmentation. The best accuracy of the Xception model is 95% on augmented data with a learning rate of 0.001 and a dropout of 0.1.
Implementasi VGG 16 dan Augmentasi Zoom Untuk Klasifikasi Kematangan Sawit Mazdavilaya, T Kaisyarendika; Yanto, Febi; Budianita, Elvia; Sanjaya, Suwanto; Syafria, Fadhilah
KLIK: Kajian Ilmiah Informatika dan Komputer Vol. 4 No. 6 (2024): Juni 2024
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/klik.v4i6.1940

Abstract

Indonesia is a country that has very abundant palm oil plantations and makes palm oil one of the largest export commodities in Indonesia. Fruit maturity on oil palms has a significant influence on palm oil and kernel production. The level of ripeness in palm oil fruit can affect several contents in it, such as tocopherol content, yield and FFA. The classification will be divided into 2 classes, namely between ripe and immature fruit with data on 500 images of ripe fruit and 500 images of immature fruit, data taken from the Kaggle site and private gardens taken using a cellphone camera. The data that has been obtained is augmented which is useful for enriching the data to make it more abundant. Data augmentation uses zoom augmentation and makes the original 1000 data increase to 2000 data. The model used is VGG 16 which is part of deep learning. The existing dataset is then preprocessed, resized and rescaled, then divides the data into 3, namely train, test and valid data. After dividing the data, then carry out the classification process with VGG 16 and set the hyperparameters after that the model will learn with 20 epochs. The model will learn with 57 schemes to compare and find highest accuracy. After the model has finished learning, it is evaluated using a confusion matrix. The results obtained were that the 90:10 data division using data augmentation with a learning rate of 0.01 and a dropout of 0.001 obtained the best accuracy, reaching 93.8%.