Claim Missing Document
Check
Articles

Found 24 Documents
Search

Landing Page (LPg) Sebagai Media Digital Marketing Dalam Memulai Usaha Di SMK Swasta Gajah Mada Sembiring, Hilda Elsera Br; Fujiati, Fujiati; Dewi, Rofiqoh; Tanjung, Dahriani Hakim; Verina, Wiwi; Sanjaya, Andi
BERNAS: Jurnal Pengabdian Kepada Masyarakat Vol. 6 No. 1 (2025)
Publisher : Universitas Majalengka

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31949/jb.v6i1.10293

Abstract

Kehadiran digital marekting saat ini memudahkan segala kalangan dalam memulai bisnis dengan tepat dan sesuai dengan target yang dituju. Belanja di internet juga bukanlah sebuah hal baru yang dilakukan calon pembeli ketika mencari informasi produk yang akan dibeli [1]. Salah satu teknologi tersebut Landing Page yang dapat digunakan sebagai media pemasaran online yang dapat menjangkau calon pembeli, penggunaannya bisa dilakukan dan di kontrol dimana saja tanpa menguras waktu dan tenaga serta hanya membutuhkan modal berupa smartphone ataupun laptop (sejenisnya) [2]. Salah satu peran Landing page adalah dapat mengubah pengunjung menjadi pelanggan sebagi wujud prospek potensial dan gerbang konversi dalam pemasaran digital [3]. Untuk itu dibutuhkan sebuah pelatihan Landing page kepada siswa/i Sekolah Menengah Kejuruan (SMK) sebagai dasar awal praktek memulai bisnis ketika selesai sekolah karena salah tujuan siswa/i SMK ketika tamat sekolah yaitu siap kerja dan berwirausaha [4]. Oleh karena itu siswa/i SMK selalu di latih dan diajarkan secara langsung mengenai praktek dalam memulai bisnis dan berkarir. Hal tersebut menjadi salah satu tujuan dari pelatihan ini yaitu untuk membekali siswa/i dalam berwirausaha digital dengan memanfaatkan platform Landing page agar mendapatkan calon pembeli yang prospek sesuai dengan bisnis yang dipasarkan.
Analisis Kinerja Algoritma Klasifikasi terhadap Dataset Penerimaan Pegawai Outsourcing Syahputra, Firman; Tanjung, Dahri Yani Hakim; Verina, Wiwi; Ihsan, Ok.Muhammad; Dewi, Rofiqoh; Sanjaya, Andi
Jurnal Minfo Polgan Vol. 14 No. 1 (2025): Artikel Penelitian
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/jmp.v14i1.14729

Abstract

Penelitian ini bertujuan untuk menganalisis dan membandingkan kinerja tiga algoritma klasifikasi, yaitu Decision Tree, Naive Bayes, dan K-Nearest Neighbors (K-NN), dalam memprediksi kelayakan calon pegawai outsourcing berdasarkan data historis. Evaluasi dilakukan menggunakan metrik akurasi, presisi, recall, dan F1-score. Dari hasil pengujian yang telah dilakukan dimana nilai akurasi dari algoritma C4.5 yang dihasilkan adalah 75,00%. Nilai akurasi ini lebih besar daripada model algoritma klasifikasi K-NN sebesar 73,00% dan naïve bayes sebesar 64,00%, namun nilai performa algoritma KNN ini memiliki keunggulan nilai performa akurasi dibandingkan dengan Naïve bayes. Hasil analisis menunjukkan bahwa algoritma Decision Tree memiliki kinerja terbaik dibandingkan dua algoritma lainnya, baik dari sisi akurasi maupun keseimbangan antara presisi dan recall. Hal ini menunjukkan bahwa model Decision Tree cukup efektif dalam menangani data campuran dan menghasilkan prediksi yang andal dalam konteks klasifikasi calon pegawai outsourcing. Dengan hasil ini, diharapkan model klasifikasi berbasis Decision Tree dapat diterapkan dalam sistem pendukung keputusan untuk meningkatkan efisiensi dan akurasi dalam proses rekrutmen tenaga kerja outsourcing. Penelitian ini diharapkan dapat menjadi acuan untuk penelitian lebih lanjut di bidang penerapan data mining dalam manajemen sumber daya manusia.
Analisis Perbandingan Algoritma Klasifikasi Terhadap Data Problem Mesin ATM Dengan Rapidminer Tanjung, Dahriani Hakim; Dewi, Rofiqoh; Fujiati, Fujiati; Salim, Rinrin Meilani
CSRID (Computer Science Research and Its Development Journal) Vol. 16 No. 2 (2024): June 2024
Publisher : LPPM Universitas Potensi Utama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22303/csrid.16.2.2024.188-200

Abstract

The aim of the proposed research is to compare and test the accuracy of data mining classification algorithms. Comparing algorithms that depend on different parameters of a given data set. There are learning and classification algorithms that are used to analyze, study and classify the available data. However, the problem is finding the best algorithm and the desired results with the highest level of accuracy in predicting future values ​​or events from a data set. Where the classification models used are the C4.5 and Naïve Bayes algorithms. Testing and validation using k-fold Cross Validation as well as evaluating the performance of the prediction model using the ROC-AUC graph with graphic visualization. The data used as samples were taken from ATM machine problem data with a total of approximately 250 samples. Testing was carried out with the help of the Rapidminer tool with operators and parameters used in creating models of the algorithms being compared. The tests that have been carried out prove that the C4.5 algorithm has the best performance with an average accuracy value of 96.00%, a recall value of 97.78% and a precision value of 92.14%, while the naïve Bayes algorithm produces an accuracy value of 83. 00%, the recall value is 76.40% and the precision value is 84.82%. Apart from that, evaluation and validation in this test is also seen based on the ROC curve called AUC (Area Under the ROC Curve) where for the C4.5 algorithm the value is 0.931 while naïve Bayes is 0.894 so the C4.5 algorithm is categorized as Very Good Classification because it has a value between 0.90-1.00. These results show that the C4.5 algorithm is proven to be a potentially effective and efficient classification algorithm.
Rancangan Inovasi Layanan Kesehatan Gigi dan Mulut: Integrasi Sistem Berbasis Web dengan Telemedicine untuk Meningkatkan Aksesibilitas Sadikin, Muhammad; Syamanta, Arbana; Dwiki Putri, Dini Ridha; Dewi, Rofiqoh; Setiawan, Adil
Publikasi Pengabdian Masyarakat Vol 4 No 2 (2024): PUBLIDIMAS Vol. 4 No. 2 NOVEMBER 2024
Publisher : LPPM Universitas Potensi Utama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22303/publidimas.v4i2.399

Abstract

Oral health is an important component of general health that is often neglected in society. In Indonesia, many individuals experience oral health problems due to lack of access to quality health services. This is especially true in underserved areas, where people face various obstacles, such as distance, cost, and lack of information about available health services. In this PkM, researchers studied the development and implementation of a web-based oral health service system with telemedicine support to improve the accessibility and effectiveness of dental health services. Through user needs analysis and evaluation of the system prototype, the results showed that this platform allows patients to register, schedule consultations, and access dental health information online with a high level of satisfaction. Online consultations proved effective in providing accurate diagnoses, while the educational materials provided contributed to increased awareness of dental health. The results of this PkM confirm that the implementation of telemedicine in dental health services not only improves accessibility but also the quality of services, and contributes to the development of digital health systems in the future