Claim Missing Document
Check
Articles

Found 9 Documents
Search

Membangun Perspektif Tata Kelola Data Mutakhir Melalui Pelatihan Blockchain Dasar Bagi UMKM Kota Bandung Muhammad Yusril Helmi Setyawan; Cahyo Prianto; Muhammad Ibnu Choldun
Merpati: Media Publikasi Pengabdian Kepada Masyarakat Politeknik Pos Indonesia Vol. 4 No. 1 (2022): Merpati
Publisher : LPPM Politeknik Pos Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36618/merpati.v4i1.2408

Abstract

Pelaku Usaha Mikro Kecil dan Menengah (UMKM) di Indonesia memiliki peranan penting dalam mempertahankan pertumbuhan laju perekonomian Indonesia. Peranan ini tidak terlepas dari kemampuan UMKM dalam beradaptasi dengan perkembangan jaman. Dan dibaliknya tidak terlepas dari peran serta pihak-pihak yang berkepentingan terhadap perkembangan UMKM melalui pembekalan pengetahuan dan keterampilan. Dampaknya UMKM dapat tetap bertahan hidup diberbagai situasi dan kondisi ekonomi negara. Di masa pandemi, UMKM mampu memberikan kontribusi 60,5 persen untuk PDB dan mampu menyerap tenaga kerja hingga 96,92 persen. Kenyataan ini membuktikan bahwa pemutakhiran pengetahuan dan keterampilan menjadi bagian dari kunci kesuksesan pengembangan UMKM di Indonesia. Penguasaan teknologi mutakhir merupakan salah satu hal yang penting bagi UMKM untuk dapat meningkatkan akses pasar dan profit. Blockchain merupakan teknologi mutakhir yang sangat krusial dalam mendukung efisiensi, meningkatkan aksesibilitas, keamanan dan transparansi. Kegiatan Pengabdian kepada masyarakat (PkM) ini bertujujuan untuk melaksanakan pelatihan dasar tentang Blockchain kepada UMKM agar para pelaku UMKM mendapatkan wawasan baru tentang blockchain terkait manfaat, perspektif dan peluangnya bagi UMKM. Dengan pengetahuan dan keterampilan ini, UMKM didorong untuk dapat berkiprah di pasar global melalui akses teknologi terkini. Pelatihan ini dilaksanakan secara daring yang dikuti oleh 133 peserta dari perwakilan UMKM yang tersebar di wilayah kota Bandung dan sekitarnya
IMPLEMENTASI SPELLING CORRECTOR UNTUK MENGATASI TYPOGRAPHICAL ERROR PADA FITUR PENCARIAN APLIKASI KAMUS ISTILAH INFORMATIKA Cahyo Prianto; Dian Markuci; Syafrial Fachri Pane
Jurnal Teknologi Informasi: Jurnal Keilmuan dan Aplikasi Bidang Teknik Informatika Vol. 17 No. 1 (2023): Jurnal Teknologi Informasi : Jurnal Keilmuan dan Aplikasi Bidang Teknik Inform
Publisher : Universitas Palangka Raya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47111/jti.v17i1.5520

Abstract

Information needs can arise because of a knowledge gap in a person with the necessary information needs, one of which is knowledge in the field of computers and informatics, especially related to terms in the computer field. Therefore we need a system that makes it easy for users to meet the information needs needed by building a digital dictionary application related to computer terms and informatics by utilizing the search engine features in it. Search activities are carried out daily to meet information needs. However, an error that is often unavoidable in performing a search is a typing error in the query. As a result, the information sought is not as expected. Based on this, we need a system that can identify typographical errors in the search text. So in this research, a website-based dictionary of computer and informatics terms will be developed by applying Peter Norvig's spelling corrector using the Python language with the flask framework. The implementation results show that Peter Norvig's spelling corrector method can be applied to computer and informatics term dictionary applications. This can be seen at the level of accuracy reaching 89% in correcting 180 word variations that contain typographical errors based on the highest probability of each possible word in the corpus. However, there is a lack of this spelling corrector method, it is still difficult to overcome typos in spelling abbreviations and typographical errors that exceed 1 letter
ANALISIS SENTIMEN PERBANDINGAN LAYANAN JASA PENGIRIMAN KURIR PADA ULASAN PLAY STORE MENGGUNAKAN METODE DECISION TREE DAN RANDOM FOREST Dellavianti Nishfi Ilmiah Huda; Cahyo Prianto; Rolly Maulana Awangga
JURNAL ILMIAH INFORMATIKA Vol 11 No 02 (2023): Jurnal Ilmiah Informatika (JIF)
Publisher : LPPM Universitas Putera Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33884/jif.v11i02.7952

Abstract

Courier delivery is a crucial aspect of the e-commerce industry, and customer satisfaction with delivery services can significantly impact a company’s reputation, whether positive or negative. Therefore, sentiment analysis of customer reviews on the Play Store platform can provide valuable insights into the performance and acceptance of various courier delivery services available. This Study aims to conduct sentiment analysis on reviews of courier delivery services using two classification methods: Random Forest and Decision Tree. The first step in this research is data pre-processing, which includes text cleaning, tokenization, and the removal of irrelevant words. Subsequently, relevant features are extracted from the review texts using suitable feature extraction methods. Both Random Forest and Decision Tree methods are implemented to classify reviews from three companies: Pt X, Pt Y, and Pt Z, into two sentiment categories: positive and negative.The performance of both methods is evaluated using standard evaluation metrics. Furthermore, it is expected that this research will provide valuable information to the three e-commerce companies and courier service providers in improving the quality of their services based on customer feedback. Additionally, it can serve as a reference for consumers in choosing a courier delivery company that suits their needs.
ANALISIS SENTIMEN UNTUK MEMPREDIKSI HASIL CALON PEMILU PRESIDEN MENGGUNAKAN LEXICON BASED DAN RANDOM FOREST Oktaviami Manullang; Cahyo Prianto; Nisa Hanum Harani
JURNAL ILMIAH INFORMATIKA Vol 11 No 02 (2023): Jurnal Ilmiah Informatika (JIF)
Publisher : LPPM Universitas Putera Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33884/jif.v11i02.7987

Abstract

The Presidential Election is one of the crucial moments in Indonesian politics. To predict the election results, sentiment analysis methods can be used to evaluate public opinions through social media. One of the popular social media platforms nowadays is Twitter. As the Republic of Indonesia's Presidential Election approaches, there is an increasing number of tweets discussing the event. This situation creates a favorable opportunity to conduct sentiment analysis on the election campaign topic. There are various opinions from Twitter users with positive, neutral, and negative sentiments. The collected tweet data undergoes preprocessing, involving two main processes: cleaning and stemming. Therefore, sentiment analysis is necessary to understand the public's tendencies towards the election. The objective of this research is to obtain sentiment analysis of the text documents to determine positive or negative sentiments. Two methods, namely Random Forest and Lexion Based, are used to predict the presidential candidates' sentiments. Random Forest is employed to analyze sentiments in text data collected from various sources, including social media, news websites, and online forums. This method involves an ensemble of decision trees working collectively to classify sentiments as positive, negative, or neutral towards the Presidential Election candidates. On the other hand, Lexion Based is used to associate words in the text with specific sentiments.
Pembuatan Website Layanan Keuangan dengan Metode Scrum Muhammad Nazhim Maulana; Cahyo Prianto
Jurnal Tekno Kompak Vol 17, No 2 (2023): Agustus
Publisher : Universitas Teknokrat Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33365/jtk.v17i2.2591

Abstract

Keuangan merupakan salah satu hal yang perlu untuk diperhatikan apalagi dalam dunia industri. Dengan adanya pengaturan keuangan yang baik maka dapat membuat satu perusahaan atau instansi menjadi lebih maju. Perlu diingat untuk layanan keuangan masih sering mengalami masalah. Beberapa masalah yang biasa terjadi adalah kekeliruan angka penggajian pegawai, kemudian adanya gaji pegawai yang belum dibayarkan, lalu pencatatan pengeluaran yang tidak sesuai dengan kenyataan yang terjadi dilapangan, dan masih banyak masalah lainnya. Masalah-masalah seperti ini memiliki akibat yang sangat fatal, oleh sebab itu sebuah website yang dapat membantu untuk melakukan pengaturan terhadap penggajian, pemberian bonus dan juga keuangan akan mengatasi kendala yang bisa terjadi ketika masih melakukan pengaturan keuangan secara manual. Website dipilih karena pengguna tidak akan perlu memasang aplikasi sehingga tidak akan terjadi penggunaan memori terhadap perangkat pengguna. Untuk dapat menggunakan aplikasi, pengguna hanya perlu mengunjungi website tersebut melalui mesin pencari yang diinginkan dan melakukan login saja untuk menggunakannya.  Website ini dibuat  dengan menggunakan salah satu metode pengembangan agile yaitu scrum. Scrum dipilih karena metode ini dapat memberikan hasil yang maksimal. Dengan adanya website layanan keuangan ini nantinya diharapkan pencatatan transaksi keuangan akan menjadi lebih transparan, pemasukan ataupun pengeluaran dapat dilihat dengan jelas dan kelalaian pencatatan akibat adanya human error juga bisa teratasi.
Prediksi Pola Kedatangan Turis Mancanegara dan Menganalisis Ulasan Tripadvisor dengan LSTM dan LDA Fahira Fahira; Cahyo Prianto
Jurnal Tekno Insentif Vol 17 No 2 (2023): Jurnal Tekno Insentif
Publisher : Lembaga Layanan Pendidikan Tinggi Wilayah IV

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36787/jti.v17i2.1096

Abstract

Abstrak Penelitian ini menggunakan model LSTM dan LDA untuk meramalkan pola kedatangan wisatawan mancanegara dan menganalisis ulasan Tripadvisor di Jakarta. LSTM memproyeksikan pola kedatangan berdasarkan data historis dan menunjukkan peningkatan jumlah wisatawan dalam periode satu tahun mendatang, sedangkan LDA mengidentifikasi topik utama dalam ulasan dengan tujuan rekomendasi spesifik untuk kota Jakarta. Rekomendasi penelitian meliputi peningkatan pelayanan, kebersihan, infrastruktur, promosi tempat wisata alternatif, dan komunikasi yang jelas kepada wisatawan. Evaluasi menunjukkan performa yang baik, dengan MAPE 2,69% dalam memprediksi kedatangan wisatawan. Penelitian ini menjadi dasar untuk pengambilan keputusan dan perencanaan industri pariwisata Jakarta. Secara keseluruhan, penelitian ini memberikan wawasan berharga untuk pengembangan industri pariwisata Jakarta dengan prediksi akurat dan analisis ulasan wisatawan. Abstract This study uses the LSTM and LDA models to predict arrival patterns of foreign tourists and analyze Tripadvisor reviews in Jakarta. The LSTM projects arrival patterns based on historical data and shows an increase in the number of tourists in the coming one year period, while the LDA identifies the main topics in the review with specific recommendation objectives for the city of Jakarta. Research recommendations include service improvement, cleanliness, infrastructure, promotion of alternative tourist attractions, and clear communication to tourists. Evaluation shows good performance, with MAPE 2.69% in predicting tourist arrivals. This research forms the basis for decision making and planning for the Jakarta tourism industry. Overall, this research provides valuable insights for the development of Jakarta's tourism industry with accurate predictions and analysis of tourist reviews.
Prediksi Cuaca Kota Jakarta Menggunakan Metode Random Forest Zian Asti Dwiyanti; Cahyo Prianto
Jurnal Tekno Insentif Vol 17 No 2 (2023): Jurnal Tekno Insentif
Publisher : Lembaga Layanan Pendidikan Tinggi Wilayah IV

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36787/jti.v17i2.1136

Abstract

Abstrak Prediksi cuaca berperan penting dalam berbagai bidang kehidupan, seperti pertanian, transportasi, pariwisata, dan mitigasi bencana. Kemampuan memprediksi cuaca secara akurat dan tepat waktu sangat berdampak dalam pengambilan keputusan yang cerdas. Kota Jakarta, sebagai ibu kota Indonesia yang padat penduduk dan memiliki aktivitas ekonomi tinggi, membutuhkan sistem prediksi cuaca yang handal untuk mendukung pengelolaan sektor-sektor tersebut. Studi ini bertujuan memprediksi cuaca di Kota Jakarta dengan menggunakan metode Random Forest dan data cuaca historis yang terpercaya dari website OpenData Jakarta. Evaluasi menunjukkan bahwa model Random Forest memberikan prediksi cuaca yang baik, dengan akurasi, presisi dan recall sebesar 0.71, F1-score sebesar 0.70, serta ROC-AUC sebesar 0.92. Metrik evaluasi ini menggambarkan kinerja model dalam mengklasifikasikan cuaca dengan baik, mempertimbangkan keakuratan, ketepatan, dan keseimbangan antara presisi dan recall. Hasil prediksi cuaca tersebut mencakup kemampuan model untuk mengidentifikasi dengan benar berbagai kelas cuaca, dan memberikan informasi berharga dalam pengambilan keputusan terkait kondisi cuaca di Kota Jakarta. Abstract Weather prediction plays a crucial role across various life domains, including agriculture, transportation, tourism, and disaster mitigation. The ability to predict weather accurately and in a timely manner significantly impacts informed decision-making. Jakarta, as Indonesia's populous capital with high economic activity, necessitates a reliable weather forecasting system to support sector management. This study aims to predict Jakarta's weather using the Random Forest method and dependable historical weather data from the OpenData Jakarta website. Evaluation reveals that the Random Forest model offers favorable weather predictions, boasting an accuracy, precision, and recall of 0.71, an F1-score of 0.70, and an ROC-AUC of 0.92. These evaluation metrics epitomize the model's adeptness in effectively classifying weather, striking a balance between precision and recall. The weather prediction outcomes encompass the model's capacity to accurately identify diverse weather categories, thereby furnishing valuable insights for decision-making concerning Jakarta's weather conditions.
Analisis Sentimen dalam Memprediksi Hasil Pemilu Presiden dan Wakil Presiden : Systematic Literature Review Oktaviami Manullang; Cahyo Prianto
Jurnal Informatika dan Teknologi Komputer (J-ICOM) Vol 4 No 2 (2023): Jurnal Informatika dan Teknologi Komputer ( JICOM)
Publisher : Universitas Samudra

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55377/j-icom.v4i2.7723

Abstract

In this research, an analysis of public sentiment towards the presidential and vice presidential candidates will be carried out through the Twitter social network. Sentiment analysis has become an interesting topic in predicting the results of this election, therefore the writing in this paper summarizes the use of sentiment analysis in the presidential election from 2014 to 2019. Looking at the public's response to presidential and vice presidential candidates on social media, especially Twitter, there is responding positively and negatively. The purpose of this journal is to compare methods for predicting public response to elections, and to conduct a systematic review of the literature to identify, review, and synthesize research related to the use of sentiment analysis in predicting the results of the Presidential and Vice-Presidential elections.
Effectiveness of Pickup and Delivery Services in Logistics Companies with Route Optimization using the A* Algorithm Prianto, Cahyo; Adiningrum, Nur Tri Ramadhanti
Telematika Vol 17, No 2: August (2024)
Publisher : Universitas Amikom Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35671/telematika.v17i2.2860

Abstract

Logistics is situated at the epicenter of both production and consumption, its role in the economy is becoming more and more significant. A logistics company is a business that specializes in offering logistics services; an example of such a business in Bandung is a logistics company that offers pickup and delivery services. Of the many locations that will be visited by couriers every day, of course, effective vehicle route management is needed to minimize costs, time, and vehicle efficiency. Therefore, the goal is to find the shortest route from one location to another based on the distance factor. To achieve this goal, the A* algorithm is used using Python as a solution to find the shortest route and Dijkstra as a comparison of route search algorithms. The study's findings demonstrated that the A* algorithm, with a calculation time of 0.0004022 ms, was efficient in finding the shortest path while requiring the least amount of CPU processing at 5.56%. While Dijkstra took 7.29% of the computation and produced a time of 0.033026 ms. A* proved effective in finding the shortest route by producing a distance of 3.11 km. While other routes produced distances of 3.34 km, 4.54 km, and 4.77 km. In addition, the use of a GUI has been successfully implemented as an interactive visualization so that couriers can easily find the shortest route along with the distance traveled. The logistics company can use the A* algorithm and the GUI developed to improve the efficiency of delivery and pickup of goods. By utilizing optimized shortest route searches, companies can save time and increase customer satisfaction through faster and more efficient delivery.