Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Mental Disorder Detection via Social Media Mining using Deep Learning Binti Kholifah; Iwan Syarif; Tessy Badriyah
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 5, No. 4, November 2020
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v5i4.1120

Abstract

Due to the imperceptible nature of mental disorders, diagnosing a patient with a mental disorder is a challenging task. Therefore, detection in people with mental disorders can be done by looking at the symptoms they experience. One symptom in patients with mental disorders is solitude. Patients with mental disorders feel indifferent to their environment and mainly focus on their own thoughts and emotions. Therefore, the patient looks for a place that can accommodate his feelings. Twitter is one of the most widely used media in measuring one's personality through everyday statements. The symptoms as suggested by psychologists can be explored more broadly using Natural Languages Processing. The process involves taking a lexicon containing keywords that could indicate symptoms of depression. This study uses five criteria as a measure of mental health in a statement: sentiment, basic emotions, the use of personal pronouns, absolutist words, and negative words. The results show that the use of sentiments, emotions, and negative words in a statement is very influential in determining the level of depression. A depressed person more often uses negative words that indicate his self-despair, prolonged sadness, even suicidal thoughts (e.g. "sadly”, “scared”, “die”, “suicide”). In the classification process, LSTM Deep Learning generates an accuracy of 70.89%; precision of 50.24%; recall 70.89%.
Analysis of Mental Health Disorders via Social Media Mining Using LSTM and Bi-LSTM Kholifah, Binti; Syarif, Iwan; Badriyah, Tessy
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 10, No. 3, August 2025
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v10i3.2205

Abstract

Mental health disorders are a growing global concern, with many individuals lacking early detection and appropriate treatment. Mental illness can impact a person’s quality of life and often goes undetected until symptoms worsen. One contributing factor to this problem is the limited ways to detect mental disorders in their early stages. Social media, especially platform X, offers the potential to analyze users’ emotional expressions that may indicate a mental disorder, such as depression or anxiety. Psychological symptoms can be explored more broadly using Natural Language Processing. This study optimizes several text preprocessing techniques to extract meaningful information from social media text. To convert words into numerical vectors, several word embedding methods are used, such as Word2Vec, FastText, and GloVe. Meanwhile, the classification process is carried out using LSTM and Bi-LSTM because they are considered capable of studying data sequence patterns, such as sentence structure, effectively. The results show that the addition of expanding contractions, emoticon handling, negation handling, repeated character handling, and spelling correction in the preprocessing text can improve the model performance. In addition, Bi-LSTM with pre-trained FastText shows better results than the other methods in all experiments, achieving 86% accuracy, 87.5% precision, 84% recall, and 85.71% F1-Score.