Claim Missing Document
Check
Articles

Found 23 Documents
Search

Analisis Pemanfaataan Webqual 4.0 Dan Customer Satisfaction Index (CSI) Dalam Menilai Kualitas Website Terhadap Kepuasan Pelanggan Pada Aplikasi Tokopedia Fikri, Muhammad; Herawati, Sri; Negara, Yudha Dwi Putra
KOMPUTEK Vol. 8 No. 2 (2024): Oktober
Publisher : Universitas Muhammadiyah Ponorogo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24269/jkt.v8i2.3033

Abstract

Tokopedia's website is declining because customers complain about Tokopedia's service quality. The improvement of website services aims to increase the ranking and user satisfaction of the Tokopedia website has not yet achieved optimal results. With this, research was conducted to analyse the use of Webqual 4.0 and Customer Satisfaction Index (CSI) in assessing the quality of the website on customer satisfaction on the Tokopedia application. From the results of the Validity Test of the level of importance and satisfaction, the r table which has a significance level of 0.05 with respondents as many as 100 people is 0.1966. The results of the calculated r value > r table value as a result the entire attribute is valid and can be used in research and the results of the Reliability Test of interests and satisfaction are worth Cronbach's Alpha> 0.6 (Reliable requirement value), as a result the questionnaire can be declared Reliable. From the results of the CSI calculation, a value of 80.4% was obtained. The CSI value obtained lies in the 66% - 80.99% index with the description "satisfied". With this it is concluded that overall customers are satisfied with the quality of the website on the tokopedia application.
Klasifikasi Pemilihan Jenis Obat untuk Pasien menggunakan Algoritma K-Nearest Neighbor (K-NN) Uddin, Syah Rafi; Putra Negara, Yudha Dwi; Fatah, Doni Abdul
KOMPUTEK Vol. 9 No. 1 (2025): April
Publisher : Universitas Muhammadiyah Ponorogo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24269/jkt.v9i1.3174

Abstract

Memilih jenis obat yang sesuai dengan kebutuhan pasien merupakan salah satu aspek penting dalam dunia medis yang mempengaruhi efektivitas pengobatan dan keselamatan bagi pasien itu sendiri. Dengan semakin berkembang nya dunia teknologi informasi, pengambilan keputusan dalam pemilihan obat kini dapat didukung dengan menggunakan metode machine learning. Penelitian ini tentunya juga bertujuan untuk mengembangkan sistem klasifikasi pemilihan jenis obat menggunakan algoritma K-Nearest Neighbor (K-NN). Data yang digunakan dalam penelitian ini terdiri atas, umur pasien, jenis kelamin pasien, tekanan darah pasien, dan juga jenis obat. Algoritma K-NN dipilih karena kemampuannya dalam mengklasifikasikan data berdasarkan kedekatan atribut pasien dengan data yang telah terlabel sebelumnya. Parameter 𝑘 yang optimal ditentukan untuk memaksimalkan akurasi prediksi. Sistem ini tentunya sangat diharapkan untuk dapat membantu para tenaga medis dalam membuat keputusan yang lebih cepat dan tepat dalam pemilihan obat. Serta mengurangi resiko kesalahan dalam pemberian obat. Proses pengolahan data dalam penelitian ini mencakup tahapan data understanding, data cleaning, exploratory data analysis (EDA), data preparation, hingga modeling. Model K-Nearest Neighbors (K-NN) dengan parameter 𝑘 = 3 berhasil mencapai tingkat akurasi sebesar 78%, menunjukkan potensi pendekatan ini dalam analisis data yang dilakukan.
Analisis Sentimen Masyarakat Terhadap Penerima Beasiswa Kartu Indonesia Pintar Kuliah Dengan Metode Support Vector Machine Jannan, M Fahriz Zain; Dwi Putra Negara, Yudha
Journal of Information and Technology Vol. 4 No. 2 (2024): Journal of Information and Technology Unimor (JITU)
Publisher : Department of Information Technology, Universitas Timor, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32938/jitu.v4i2.7598

Abstract

Kartu indonesia pintar merupakan upaya pemerintah membantu para siswa berprestasi yang memiliki keterbatasan ekonomi untuk melanjutkan studi ke perguruan tinggi. Ramainya pembahasan kartu indonesia pintar di twitter membuat penulis tertarik untuk mengetahui sentimen masyarakat terhadap penerima beasiswa kartu indonesia pintar kuliah dengan keyword “KIPK”. Sentimen terdiri dari sentimen negatif, positif, dan netral. Metode yang di gunakan menganalisis pendapat masyarakat pada media sosial twitter mengunakan Support Vector Mechine ( SVM ). Term Frequency-inverce document Frequency ( TF-IDF ) kami gunakan untuk melakukan pengukuran seberapa penting kata dalan suatu data. Sedangkan untuk mengukur kinerja klasifikasi SVM menggunakan metode Confusion Matrix. Karnel linear merupakan karnel yang kami gunakan pada analisis data. Hasil evaluasi yang di dapat yaitu 81,82%, precession 80%, recall 82%, dan F1-score 78%, dapat di simpulkan bahwa sentimen masyarakat pada media sosial twitter terhadap penerima beasiswa kartu indonesia pintar kuliah lebih condong ke sentimen netral.