p-Index From 2021 - 2026
7.486
P-Index
This Author published in this journals
All Journal Jurnal Simetris Elkom: Jurnal Elektronika dan Komputer Prosiding SNATIF InfoTekJar : Jurnal Nasional Informatika dan Teknologi Jaringan Syntax Literate: Jurnal Ilmiah Indonesia Jurnal SOLMA JOURNAL OF APPLIED INFORMATICS AND COMPUTING JURNAL MANAJEMEN INFORMATIKA (JUMIKA) Jurnal DISPROTEK Jurnal Nasional Komputasi dan Teknologi Informasi JUTEKIN (Jurnal Manajemen Informatika) Jurnal Abdimas PHB : Jurnal Pengabdian Masyarakat Progresif Humanis Brainstorming Jurnal SITECH : Sistem Informasi dan Teknologi Jutisi: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi JATI (Jurnal Mahasiswa Teknik Informatika) Abdimas: Jurnal Pengabdian Masyarakat Universitas Merdeka Malang E-Link: Jurnal Teknik Elektro dan Informatika JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH) Jurnal Sistem Komputer dan Informatika (JSON) Dinamika Informatika: Jurnal Ilmiah Teknologi Informasi Jurnal Algoritma, Logika dan Komputasi Indonesian Journal of Technology, Informatics and Science (IJTIS) WASIS : Jurnal Ilmiah Pendidikan Jurnal Pendidikan dan Teknologi Indonesia Jurnal Dialektika Informatika (Detika) Journal La Multiapp JAST Muria Jurnal Layanan Masyarakat Jurnal Pengabdian Masyarakat Intimas (Jurnal INTIMAS): Inovasi Teknologi Informasi Dan Komputer Untuk Masyarakat Biner : Jurnal Ilmiah Informatika dan Komputer Jurnal Pengabdian Pada Masyarakat Nusantara Journal of Computers and its Applications SmartComp Science Information System and Technology INOVTEK Polbeng - Seri Informatika JuTISI (Jurnal Teknik Informatika dan Sistem Informasi) Jurnal Bina Informatika dan Komputer (BINER)
Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : Jurnal Simetris

PREDIKSI VOLUME LALU LINTAS ANGKUTAN LEBARAN PADA WILAYAH JAWA TENGAH DENGAN METODE K-MEANS CLUSTERING UNTUK ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS) Evanita, Evanita; Noersasongko, Edi; Pramunendar, Ricardus Anggi
Jurnal Simetris Vol 7, No 1 (2016): JURNAL SIMETRIS VOLUME 7 NO 1 TAHUN 2016
Publisher : Universitas Muria Kudus

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (450.085 KB)

Abstract

Di Indonesia kepadatan arus lalu lintas terjadi pada jam berangkat dan pulang kantor, hari-hari libur panjang atau hari-hari besar nasional terutama saat hari raya Idul Fitri (lebaran). Mudik sudah menjadi tradisi bagi masyarakat Indonesia yang ditunggu-tunggu menjelang lebaran, berbondong-bondong untuk pulang ke kampung halaman untuk bertemu dan berkumpul dengan keluarga. Kegiatan rutin tahunan ini banyak di lakukan khususnya bagi masyarakat kota-kota besar seperti Jakarta, dimana diketahui bahwa Jakarta adalah Ibu kota negara Republik Indonesia dan menjadi tujuan merantau untuk mencari pekerjaan yang lebih layak yang merupakan harapan besar bagi masyarakat desa. Volume kendaraan bertambah sejak 7 hari menjelang lebaran sampai 7 hari setelah lebaran tiap tahunnya terutama pada arah keluar dan masuk wilayah Jawa Tengah yang banyak menjadi tujuan mudik. Volume kendaraan saat arus mudik yang selalu meningkat inilah yang akan diteliti lebih lanjut dengan metode ANFIS agar dapat menjadi alternatif solusi  langkah  apa  yang  akan  dilakukan di  tahun  selanjutnya agar  pelayanan lalu  lintas, kemacetan panjang dan angka kecelakaan berkurang. Dengan input parameter ANFIS yang digunakan yaitu pengclusteran hingga 5 cluster, epoch 100, error goal 0 diperoleh performa terbaik ANFIS dengan K-Means clustering yang terbagi menjadi 3 cluster, epoch terbaik sebesar 20 dengan RMSE Training terbaik sebesar  0,1198,  RMSE  Testing terbaik sebesar  0,0282  dan  waktu proses tersingkat  sebesar 0,0695.Selanjutnya hasil prediksi diharapkan dapat bermanfaat menjadi alternatif solusi langkah apa yang akan dilakukan di tahun selanjutnya agar pelayanan lalu lintas lebih baik lagi.Kata kunci: angkutan lebaran, Jawa Tengah, ANFIS.
PREDIKSI HARGA JUAL SUKU CADANG IMPOR MESIN ROKOK DENGAN JARINGAN SYARAF TIRUAN Evanita, Evanita; Hakim, Muhammad Malik
Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer Vol 9, No 1 (2018): JURNAL SIMETRIS VOLUME 9 NO 1 TAHUN 2018
Publisher : Universitas Muria Kudus

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (372.781 KB) | DOI: 10.24176/simet.v9i1.1550

Abstract

Industri rokok merupakan industri vital di wilayah Kabupaten Kudus, sehingga kesiapan kinerja mesin rokok yang menjadi salah satu penggerak utama pabrik rokok menjadi sangat penting. Salah satu cara untuk menjaga agar mesin rokok senantiasa siap bekerja adalah menjaga ketersediaan suku cadang mesin rokok, terutama Garniture. Permasalahan utama yang menjadi kendala adalah adanya fluktuasi biaya-biaya dan kurs mata uang, yang membuat harga Garniture menjadi fluktuatif dan membahayakan kelangsungan hidup dari perusahaan pemasok. Penelitian ini menggunakan Metode Jaringan Syaraf Tiruan untuk memprediksi harga jual Garniture ke industri rokok. Prediksi harga jual ini membuat perusahaan pemasok dan industri rokok mengetahui prediksi harga yang cukup akurat dan selanjutnya dapat melakukan antisipasi kerugian dan hal lain yang tidak diinginkan terkait dengan fluktuasi harga yang terjadi ketika dilakukan proses pembelian. Untuk memprediksi harga jual Garniture yang tidak menentu tersebut digunakan algoritma Backpropagation dari Jaringan Syaraf Tiruan. Terkait dengan proses training dan testing yang telah dilaksanakan menggunakan algoritma Backpropagation dari Jaringan Syaraf Tiruan dengan 24 inputan, 10 hidden layer, learning rate 0,1 dan 1 output, diperolehhasil yang cukup baik dengan nilai error atau MSE yang pada proses training sebesar 0,00099001 dan MSE pada proses testing sebesar 0,19113.
PREDIKSI VOLUME LALU LINTAS ANGKUTAN LEBARAN PADA WILAYAH JAWA TENGAH DENGAN METODE K-MEANS CLUSTERING UNTUK ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS) Evanita Evanita; Edi Noersasongko; Ricardus Anggi Pramunendar
Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer Vol 7, No 1 (2016): JURNAL SIMETRIS VOLUME 7 NO 1 TAHUN 2016
Publisher : Universitas Muria Kudus

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (450.085 KB) | DOI: 10.24176/simet.v7i1.505

Abstract

Di Indonesia kepadatan arus lalu lintas terjadi pada jam berangkat dan pulang kantor, hari-hari libur panjang atau hari-hari besar nasional terutama saat hari raya Idul Fitri (lebaran). Mudik sudah menjadi tradisi bagi masyarakat Indonesia yang ditunggu-tunggu menjelang lebaran, berbondong-bondong untuk pulang ke kampung halaman untuk bertemu dan berkumpul dengan keluarga. Kegiatan rutin tahunan ini banyak di lakukan khususnya bagi masyarakat kota-kota besar seperti Jakarta, dimana diketahui bahwa Jakarta adalah Ibu kota negara Republik Indonesia dan menjadi tujuan merantau untuk mencari pekerjaan yang lebih layak yang merupakan harapan besar bagi masyarakat desa. Volume kendaraan bertambah sejak 7 hari menjelang lebaran sampai 7 hari setelah lebaran tiap tahunnya terutama pada arah keluar dan masuk wilayah Jawa Tengah yang banyak menjadi tujuan mudik. Volume kendaraan saat arus mudik yang selalu meningkat inilah yang akan diteliti lebih lanjut dengan metode ANFIS agar dapat menjadi alternatif solusi langkah apa yang akan dilakukan di tahun selanjutnya agar pelayanan lalu lintas, kemacetan panjang dan angka kecelakaan berkurang. Dengan input parameter ANFIS yang digunakan yaitu pengclusteran hingga 5 cluster, epoch 100, error goal 0 diperoleh performa terbaik ANFIS dengan K-Means clustering yang terbagi menjadi 3 cluster, epoch terbaik sebesar 20 dengan RMSE Training terbaik sebesar 0,1198, RMSE Testing terbaik sebesar 0,0282 dan waktu proses tersingkat sebesar 0,0695.Selanjutnya hasil prediksi diharapkan dapat bermanfaat menjadi alternatif solusi langkah apa yang akan dilakukan di tahun selanjutnya agar pelayanan lalu lintas lebih baik lagi.Kata kunci: angkutan lebaran, Jawa Tengah, ANFIS.
PREDIKSI HARGA JUAL SUKU CADANG IMPOR MESIN ROKOK DENGAN JARINGAN SYARAF TIRUAN Evanita Evanita; Muhammad Malik Hakim
Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer Vol 9, No 1 (2018): JURNAL SIMETRIS VOLUME 9 NO 1 TAHUN 2018
Publisher : Universitas Muria Kudus

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (372.781 KB) | DOI: 10.24176/simet.v9i1.1550

Abstract

Industri rokok merupakan industri vital di wilayah Kabupaten Kudus, sehingga kesiapan kinerja mesin rokok yang menjadi salah satu penggerak utama pabrik rokok menjadi sangat penting. Salah satu cara untuk menjaga agar mesin rokok senantiasa siap bekerja adalah menjaga ketersediaan suku cadang mesin rokok, terutama Garniture. Permasalahan utama yang menjadi kendala adalah adanya fluktuasi biaya-biaya dan kurs mata uang, yang membuat harga Garniture menjadi fluktuatif dan membahayakan kelangsungan hidup dari perusahaan pemasok. Penelitian ini menggunakan Metode Jaringan Syaraf Tiruan untuk memprediksi harga jual Garniture ke industri rokok. Prediksi harga jual ini membuat perusahaan pemasok dan industri rokok mengetahui prediksi harga yang cukup akurat dan selanjutnya dapat melakukan antisipasi kerugian dan hal lain yang tidak diinginkan terkait dengan fluktuasi harga yang terjadi ketika dilakukan proses pembelian. Untuk memprediksi harga jual Garniture yang tidak menentu tersebut digunakan algoritma Backpropagation dari Jaringan Syaraf Tiruan. Terkait dengan proses training dan testing yang telah dilaksanakan menggunakan algoritma Backpropagation dari Jaringan Syaraf Tiruan dengan 24 inputan, 10 hidden layer, learning rate 0,1 dan 1 output, diperolehhasil yang cukup baik dengan nilai error atau MSE yang pada proses training sebesar 0,00099001 dan MSE pada proses testing sebesar 0,19113.
Metode Elbow dalam Optimasi Jumlah Cluster pada K-Means Clustering Maori, Nadia Annisa; Evanita, Evanita
Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer Vol 14, No 2 (2023): JURNAL SIMETRIS VOLUME 14 NO 2 TAHUN 2023
Publisher : Fakultas Teknik Universitas Muria Kudus

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24176/simet.v14i2.9630

Abstract

K-Means clustering merupakan salah satu strategi yang digunakan dalam analisis data dan machine learning untuk mengelompokkan data menjadi beberapa kelompok (cluster) berdasarkan kemiripan fitur atau atributnya. Metode ini bertujuan untuk meminimalkan jarak antara data dalam satu kelompok dan memaksimalkan jarak antara kelompok yang berbeda. Metode elbow merupakan sebuah metode yang diterapkan pada k-means clustering untuk menentukan jumlah optimal dari cluster yang akan dibentuk. Metode elbow membantu dalam menentukan jumlah cluster yang tepat untuk data tertentu. Data yang digunakan dalam penelitian ini adalah data penerima PKH di wilayah Kabupaten Jepara tahun 2022. Tujuan penelitian ini adalah untuk mendapatkan jumlah cluster optimal dalam melakukan pengelompokkan penerima PKH, sehingga dapat mengetahui desa yang paling banyak dijumpai pada penerima PKH di Kabupaten Jepara, agar penerima PKH yang mendapatkan lebih optimal dan tepat sasaran. Hasil penelitian setelah dilakukan pengujian dari jumlah k=2 sampai dengan k=6, didapatkan jumlah cluster terbaik menggunakan optimasi metode elbow terdapat pada jumlah cluster sebanyak 3 (k=3) dan didukung dengan nilai Davies Bouldin Index (DBI) sebesar 0.554. Pada cluster_0 terdapat 63 desa, cluster_1 terdapat 127 desa, dan cluster­_2 terdapat 5 desa yang memiliki penerima PKH lebih dari 900 rumah tangga dan lansia menjadi komponen penerima PKH Kabupaten Jepara yang paling dominan. Hasil pengelompokkan ini diharapkan dapat memudahkan dalam menentukan penerima PKH yang tepat sasaran.