Claim Missing Document
Check
Articles

Found 18 Documents
Search

Perilaku Histeretik Subassemblage Balok-Kolom Interior Prategang Parsial Reactive Powder Concrete dalam Pemodelan Finite Element Nurjannah, Siti Aisyah; Budiono, Bambang; Imran, Iswandi; Sugiri, Saptahari
Jurnal Teknik Sipil Vol 22, No 3 (2015)
Publisher : Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (768.15 KB) | DOI: 10.5614/jts.2015.22.3.2

Abstract

Abstrak. Penelitian mengenai beton di beberapa negara telah menghasilkan suatu jenis beton Ultra High Performance Concrete (UHPC) yang memiliki kekuatan, daktilitas, modulus elastisitas, dan durabilitas tinggi, yang disebut Reactive Powder Concrete (RPC). Penelitian struktur yang menggunakan material RPC di berbagai negara telah memperlihatkan kinerja yang lebih baik daripada struktur yang terbuat dari Normal Concrete (NC) ataupun High Performance Concrete (HPC) dalam menahan beban baik monotonik maupun siklik. Hasil penelitian struktur bermaterial RPC yang menahan beban siklik memperlihatkan bahwa perilaku histeretik struktur cukup baik. Dalam penelitian ini, dilakukan penelitian material RPC dan pemodelan struktur dengan metode finite element non-linier (MFE-NL). Hasil pengujian material merupakan bagian dari input pemodelan struktur subassemblage balok-kolom interior prategang parsial (S-RPC) dengan MFE-NL Sebagai pembanding, terdapat model subassemblage balokkolom interior prategang parsial yang menggunakan material NC (S-NC). Untuk menganalisis perilaku histeretik model, terdapat beberapa model S-RPC dan S-NC dengan variasi nilai Partial Prestressed Ratio (PPR). Analisis hasil pemodelan memperlihatkan keunggulan kinerja dan perilaku histeretik semua model S-RPC dibandingkan dengan model S-NC dalam hal daktilitas, disipasi energi, kekakuan, dan kekuatan. Dari hasil pemodelan, terdapat nilai PPR optimum untuk model S-RPC yang berkisar antara 21,39% sampai dengan 37,34%. Sedangkan, nilai PPR optimum untuk model S-NC adalah 34,15%.Abstract. Research on concrete in some countries has produced a concrete type of Ultra High Performance Concrete (UHPC) which has the strength, ductility, modulus of elasticity, and high durability, namely Reactive Powder Concrete (RPC). Research on structural engineering using RPC material in various countries have shown better performance than structures made of Normal Concrete (NC) or High Performance Concrete (HPC) in resisting both monotonic and cyclic loads. Research showed that structures using RPC that resisted cyclic loading had an appropriate hysteretic performance. In this study, research was conducted using RPC material and structure modeling with non-linear finite element method (NL-FEM). The material test results were used as parts of the input of the interior partial prestressed beam-column subassemblage structures (S-RPC) modelled using the NL-FEM. As a comparison, there were models of interior partial prestressed beam-column subassemblage used NC materials (S-NC). To analyze the hysteretic behavior of the models, there were variations of Partial Prestressed Ratio (PPR) values of S-RPC and S-NC models. Analysis of modeling results showed superior performance and better hysteretic behavior of all S-RPC models compared with the S-NC models in terms of ductility, energy dissipation, stiffness, and strength. From the modeling results, there were optimum PPR values of the S-RPC models which ranged between 21.39% and 37.34%. Meanwhile, the optimum PPR value of S-NC model was 34.15%.
The Hysteretic Behavior of Partially Pre-Stressed Beam-Column Joint Sub-assemblages Made of Reactive Powder Concrete Nurjannah, Siti Aisyah; Budiono, Bambang; Imran, Iswandi; Sugiri, Saptahari
Journal of Engineering and Technological Sciences Vol 48, No 5 (2016)
Publisher : ITB Journal Publisher, LPPM ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (937.968 KB) | DOI: 10.5614/j.eng.technol.sci.2016.48.5.4

Abstract

Reactive powder concrete (RPC) is an alternative to normal concrete (NC) allowing for significantly higher strength of partially pre-stressed concrete structures. In the Indonesian national standard SNI 03-2847-2013 (2013) and the American standard ACI 318-14 (2014), the partial pre-stressed ratio (PPR) is limited to a maximum of 25.0 percent to ensure that pre-stressed concrete structures remain ductile and capable to dissipate seismic energy sufficiently. The objective of this experimental study was to investigate the hysteretic performance of partially pre-stressed-RPC (PP-RPC) for both interior and exterior beam-column joint sub-assemblages. Four specimens with different levels of PPR were tested with a combination of constant axial compression and cyclic lateral loads. The PPR used for the first and the second two specimens were 22.8% and 33.8%, respectively. The strength of the RPC was 101.60 MPa for all specimens. The results showed that increasing the PPR of PP-RPC improves its hysteretic performance. The best performing specimen, with a PPR of 33.8%, had a ductility that was 1.97 times that of the specimen with a PPR of 22.8%.
Non-linear Numerical Modeling of Partially Pre-stressed Beam-column Sub-assemblages Made of Reactive Powder Concrete Budiono, Bambang; Nurjannah, Siti Aisyah; Imran, Iswandi
Journal of Engineering and Technological Sciences Vol 51, No 1 (2019)
Publisher : ITB Journal Publisher, LPPM ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1463.773 KB) | DOI: 10.5614/j.eng.technol.sci.2019.51.1.3

Abstract

Three partially pre-stressed interior beam-column sub-assemblages (SI) and two partially pre-stressed exterior beam-column sub-assemblages (SE) made of reactive powder concrete as test specimens were numerically modeled using a finite element program. The objective of this study was to investigate the behavior of the SI and SE numerical models. The numerical model inputs were: material data, details of test specimen dimensions, and test specimen reinforcements. The numerical models were subjected to the same loads as those applied experimentally. The numerical modeling results were hysteretic and backbone curves and stress distribution contours. The numerical model outputs showed good similarity with the experimental results. The stress distribution contours of the numerical models correlated with the crack patterns in the joint zone of the test specimens. The behavior of the SI numerical models differed from the SE numerical models due to various stresses on the beam plastic joints and the joint zones.
The Hysteretic Behavior of Partially Pre-Stressed Beam-Column Joint Sub-assemblages Made of Reactive Powder Concrete Siti Aisyah Nurjannah; Bambang Budiono; Iswandi Imran; Saptahari Sugiri
Journal of Engineering and Technological Sciences Vol. 48 No. 5 (2016)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2016.48.5.4

Abstract

Reactive powder concrete (RPC) is an alternative to normal concrete (NC) allowing for significantly higher strength of partially pre-stressed concrete structures. In the Indonesian national standard SNI 03-2847-2013 (2013) and the American standard ACI 318-14 (2014), the partial pre-stressed ratio (PPR) is limited to a maximum of 25.0 percent to ensure that pre-stressed concrete structures remain ductile and capable to dissipate seismic energy sufficiently. The objective of this experimental study was to investigate the hysteretic performance of partially pre-stressed-RPC (PP-RPC) for both interior and exterior beam-column joint sub-assemblages. Four specimens with different levels of PPR were tested with a combination of constant axial compression and cyclic lateral loads. The PPR used for the first and the second two specimens were 22.8% and 33.8%, respectively. The strength of the RPC was 101.60 MPa for all specimens. The results showed that increasing the PPR of PP-RPC improves its hysteretic performance. The best performing specimen, with a PPR of 33.8%, had a ductility that was 1.97 times that of the specimen with a PPR of 22.8%.
Non-linear Numerical Modeling of Partially Pre-stressed Beam-column Sub-assemblages Made of Reactive Powder Concrete Bambang Budiono; Siti Aisyah Nurjannah; Iswandi Imran
Journal of Engineering and Technological Sciences Vol. 51 No. 1 (2019)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2019.51.1.3

Abstract

Three partially pre-stressed interior beam-column sub-assemblages (SI) and two partially pre-stressed exterior beam-column sub-assemblages (SE) made of reactive powder concrete as test specimens were numerically modeled using a finite element program. The objective of this study was to investigate the behavior of the SI and SE numerical models. The numerical model inputs were: material data, details of test specimen dimensions, and test specimen reinforcements. The numerical models were subjected to the same loads as those applied experimentally. The numerical modeling results were hysteretic and backbone curves and stress distribution contours. The numerical model outputs showed good similarity with the experimental results. The stress distribution contours of the numerical models correlated with the crack patterns in the joint zone of the test specimens. The behavior of the SI numerical models differed from the SE numerical models due to various stresses on the beam plastic joints and the joint zones.
Kinerja Struktur Sistem Tunggal dan Ganda dengan Performance Based Design Siti Aisyah Nurjannah; Hanafiah; Wanda Lestari; Erwin Lim; Iswandi Imran
Cantilever: Jurnal Penelitian dan Kajian Bidang Teknik Sipil Vol 8 No 2 (2019): Cantilever
Publisher : Department of Civil Engineering and Planning, Faculty of Engineering, Sriwijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1473.019 KB) | DOI: 10.35139/cantilever.v8i2.21

Abstract

The structure of a simple rental apartment building of the Sumatran Technology Institute had been modeled using the Performance Based Design method. The aim of this study was to obtain the base shear and maximum displacement as well as the performance level of the building structure models in resisting the combination of gravitation and lateral earthquake loads. The loads were based on the function and location of the building. The building structures had been designed as a double system, namely the beam-column frames and shear walls in the direction of the XZ and YZ axis. There were four models: the models with a double system according to the original design, the beam-column frames without XZ shear walls, the beam-column frames without YZ shear walls, and the beam-column frames without shear walls. The results of the analysis at the performance level showed that the model with a double system was able to resist the highest base shear while the frames system without shear walls was only able to resist the lowest base shear compared to other models. The inter story drift under earthquake loads in the direction of the X and Y axis showed that all models of structural system were still within the safe limit.
Karakteristik Mortar Polimer Epoxy Resin Dengan Fiberglass Bambang Utomo; Siti Aisyah Nurjannah; Saloma
Cantilever: Jurnal Penelitian dan Kajian Bidang Teknik Sipil Vol 10 No 2 (2021): Cantilever
Publisher : Department of Civil Engineering and Planning, Faculty of Engineering, Sriwijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1204.103 KB) | DOI: 10.35139/cantilever.v10i2.114

Abstract

Nowadays, the developments of technology in construction are progressing very rapidly, one of which is mortar without using cement material. This encourages the development of concrete and mortar technology so that it can be widely used to repair structural or non-structural damages. In these conditions, a binder is needed in the form of an epoxy resin polymer with added fiberglass to get a strong material result in a short time. A mixture of 75% sand and 25% epoxy resin from the volume of the test object resulted a mortar compressive strength of 35.50 MPa with a specific gravity of 1.505 kg/m3. The results showed that the variation of the compressive strength of the epoxy resin mortar without fiber was higher than the variation with fiberglass. This was due to the addition of fiberglass reducing the composition of the percentage of epoxy resin which results in reduced bonding power in the mixture. The flexural strength of a mortar with variations using fiberglass was 8 MPa and showed the best performance, although the difference was not too far from the variation without fiberglass. This was because the addition of fiberglass can reduce cracks, so that the fibers can bind well. The tests had been carried out including tests of the compressive strength, flexural strength, and Scanning Electron Microscope (SEM).
Perilaku Histeretik Subassemblage Balok-Kolom Interior Prategang Parsial Reactive Powder Concrete dalam Pemodelan Finite Element Siti Aisyah Nurjannah; Bambang Budiono; Iswandi Imran; Saptahari Sugiri
Jurnal Teknik Sipil Vol 22 No 3 (2015)
Publisher : Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/jts.2015.22.3.2

Abstract

Abstrak. Penelitian mengenai beton di beberapa negara telah menghasilkan suatu jenis beton Ultra High Performance Concrete (UHPC) yang memiliki kekuatan, daktilitas, modulus elastisitas, dan durabilitas tinggi, yang disebut Reactive Powder Concrete (RPC). Penelitian struktur yang menggunakan material RPC di berbagai negara telah memperlihatkan kinerja yang lebih baik daripada struktur yang terbuat dari Normal Concrete (NC) ataupun High Performance Concrete (HPC) dalam menahan beban baik monotonik maupun siklik. Hasil penelitian struktur bermaterial RPC yang menahan beban siklik memperlihatkan bahwa perilaku histeretik struktur cukup baik. Dalam penelitian ini, dilakukan penelitian material RPC dan pemodelan struktur dengan metode finite element non-linier (MFE-NL). Hasil pengujian material merupakan bagian dari input pemodelan struktur subassemblage balok-kolom interior prategang parsial (S-RPC) dengan MFE-NL Sebagai pembanding, terdapat model subassemblage balokkolom interior prategang parsial yang menggunakan material NC (S-NC). Untuk menganalisis perilaku histeretik model, terdapat beberapa model S-RPC dan S-NC dengan variasi nilai Partial Prestressed Ratio (PPR). Analisis hasil pemodelan memperlihatkan keunggulan kinerja dan perilaku histeretik semua model S-RPC dibandingkan dengan model S-NC dalam hal daktilitas, disipasi energi, kekakuan, dan kekuatan. Dari hasil pemodelan, terdapat nilai PPR optimum untuk model S-RPC yang berkisar antara 21,39% sampai dengan 37,34%. Sedangkan, nilai PPR optimum untuk model S-NC adalah 34,15%.Abstract. Research on concrete in some countries has produced a concrete type of Ultra High Performance Concrete (UHPC) which has the strength, ductility, modulus of elasticity, and high durability, namely Reactive Powder Concrete (RPC). Research on structural engineering using RPC material in various countries have shown better performance than structures made of Normal Concrete (NC) or High Performance Concrete (HPC) in resisting both monotonic and cyclic loads. Research showed that structures using RPC that resisted cyclic loading had an appropriate hysteretic performance. In this study, research was conducted using RPC material and structure modeling with non-linear finite element method (NL-FEM). The material test results were used as parts of the input of the interior partial prestressed beam-column subassemblage structures (S-RPC) modelled using the NL-FEM. As a comparison, there were models of interior partial prestressed beam-column subassemblage used NC materials (S-NC). To analyze the hysteretic behavior of the models, there were variations of Partial Prestressed Ratio (PPR) values of S-RPC and S-NC models. Analysis of modeling results showed superior performance and better hysteretic behavior of all S-RPC models compared with the S-NC models in terms of ductility, energy dissipation, stiffness, and strength. From the modeling results, there were optimum PPR values of the S-RPC models which ranged between 21.39% and 37.34%. Meanwhile, the optimum PPR value of S-NC model was 34.15%.
Perilaku n-Panel System dalam Menahan Beban Lateral Siklik Statik Siti Aisyah Nurjannah; Nana Pudja Sukmana
Jurnal Permukiman Vol 5 No 1 (2010)
Publisher : Direktorat Bina Teknik Permukiman dan Perumahan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31815/jp.2010.5.24-35

Abstract

Dalam rencana strategis pembangunan rumah susun sampai 2011, pemerintah mencanangkan pembangunan 1000 menara atau 350.000 unit rumah susun. Pada tahun 2008, rumah susun yang direncanakan untuk dibangun di kawasan perkotaan adalah sebanyak 181 twin block dengan 17.376 unit rumah susun lengkap dengan fasilitas sosial serta prasarana dan sarana dasar permukiman. Sistem struktur beton pracetak dianggap memiliki sejumlah keunggulan dibandingkan dengan sistem beton konvensional. Pengawasan konstruksi dapat dilakukan dengan lebih mudah dan waktu konstruksi relatif cepat. Dalam rangka mendukung program pemerintah dalam menyediakan rumah susun bagi masyarakat, Pusat Penelitian dan Pengembangan Permukiman melakukan penelitian suatu sistem struktur panel beton bertulang pracetak tiga dimensi dengan bukaan yang menggunakan sistem kombinasi sambungan basah dan sambungan kering sejak tahun 2008. Sistem ini dikenal dengan nama n- Panel System. Pengujian keandalan model struktur n-Panel System dilakukan dengan pengujian beban lateral siklik statik berdasarkan program pembebanan yang direkomendasikan oleh National Earthquake Hazards Reduction Program 1997. Penilaian kinerja model struktur dilakukan berdasarkan pada kriteria keandalan struktur dinding geser menurut Federal Emergency Management Agency (FEMA) 450, nilai daktilitas, factor reduksi gempa, pola retak dan keruntuhan struktur. Hasil pengujian dengan beban lateral siklik static memperlihatkan model struktur masih stabil di atas nilai story drift yang ditetapkan dalam FEMA 450. Dengan kestabilan struktur tersebut, kriteria daktilitas yang dicapai adalah daktail penuh, dengan pembatasan nilai faktor reduksi gempa sesuai SNI 03-1726-2002. Hasil pengujian juga memperlihatkan jenis keruntuhan model struktur adalah keruntuhan geser pada dasar panel.
Pengaruh Penggunaan Prepacked Aggregate Concrete Terhadap Perbaikan Join Balok Kolom Eksterior Pracetak Pasca Pembebanan Siklik Statik Siti Aisyah Nurjannah
Jurnal Permukiman Vol 3 No 3 (2008)
Publisher : Direktorat Bina Teknik Permukiman dan Perumahan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31815/jp.2008.3.217-228

Abstract

Saat mengalami beban gempa, struktur rangka bangunan akan menyerap energi gempa secara terus menerus sehingga memasuki keadaan plastis dan mencapai batas kekuatannya, sehingga diharapkan terjadi sendi plastis pada komponen join, yaitu pada ujung balok di muka kolom. Tingkat kerusakan yang terjadi pada struktur bangunan yang menahan beban gempa adalah rusak ringan, rusak sedang, atau rusak berat. Struktur dengan jenis kerusakan ringan dan sedang masih bisa diperbaiki dan diperkuat. Sedangkan, struktur dengan kerusakan tingkat berat tidak dapat diperbaiki. Penelitian ini membahas kinerja join balok kolom eksterior pracetak yang mendapat beban siklik statik dalam dua tahap. Setelah mengalami kerusakan akibat pembebanan tahap ke-1, join diperbaiki. Setelah beton prepack cukup umur, join diuji dengan beban siklik statik tahap ke-2. Hasil uji beban yang dikaji adalah perbandingan kinerja join pada tahap ke-1 dan ke-2 yang meliputi: daktilitas, disipasi energi, momen-kelengkungan, dan pola retak.