Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Kubik

Pengelompokan Kabupaten/Kota di Jawa Barat Tahun 2018 Berdasarkan Indikator Kemiskinan dengan Polythetic Divisive Method Clarita Simar; Nurul Gusriani; Iin Irianingsih
KUBIK Vol 5, No 1 (2020): KUBIK: Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/kubik.v5i1.8549

Abstract

Masalah kemiskinan merupakan salah satu masalah yang bersifat multidimensi. Faktor kemiskinan pada setiap wilayah berbeda, dan hal tersebut dipengaruhi oleh banyak indikator kemiskinan. Pengukuran dan penentuan indikator kemiskinan akan memudahkan pemerintah membedakan tingkat kemiskinan pada suatu wilayah, sehingga pemerintah dapat membuat kebijakan yang lebih tepat untuk menanggulangi kemiskinan di wilayah tersebut. Penelitian ini bertujuan untuk mengelompokkan karakteristik suatu wilayah ke dalam beberapa tingkat kemiskinan berdasarkan variabel penjelas kemiskinan. Penelitian ini menggunakan data kemiskinan kabupaten/kota se-Jawa Barat pada tahun 2018 yang diperoleh dari BPS. Terkait dengan pengelompokan wilayah kemiskinan ke beberapa kategori, metode yang digunakan adalah metode hierarki pada analisis cluster yaitu polythetic divisive method. Banyaknya cluster optimal dipilih dengan menggunakan Dunn Index. Hasil yang diperoleh adalah polythetic divisive method menghasilkan tiga kelompok wilayah kemiskinan dengan Dunn Index sebesar 0,4490613. Karakteristik wilayah masing-masing cluster diharapkan dapat membantu pemerintah menentukan kebijakan yang sesuai untuk menanggulangi tingkat kemiskinan di Jawa Barat.
Perbandingan Penerapan Metode Agglomerative dengan Metode K-Means pada Data Curah Hujan di Wilayah Bogor Budi Nurani Ruchjana; Hera Khoirunnisa; iin Irianingsih; Bambang Suhandi
KUBIK Vol 5, No 2 (2020): KUBIK: Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/kubik.v5i2.7581

Abstract

Bogor merupakan salah satu wilayah di Jawa Barat yang dijuluki sebagai kota hujan karena memiliki curah hujan relatif lebih besar dibandingkan dengan wilayah lain sehingga perlu diadakannya pengelompokan wilayah berdasarkan tinggi rendahnya curah hujan sebagai acuan pemerintah dalam penanganan bencana. Teknik statistika multivariat yang bertujuan untuk mengelompokan objek berdasarkan karakteristiknya adalah analisis cluster. Metode analisis cluster yang digunakan penelitian ini yaitu Agglomerative dan K-Means. Perbedaan yang signifikan dari kedua metode tersebut terdapat pada proses pembentukan cluster. Oleh karena itu, tujuan pada penelitian ini adalah membandingkan metode yang tebaik berdasarkan kerapatan cluster. Data yang digunakan dalam penelitian ini adalah data agregat curah hujan bulanan musim basah dari 24 stasiun pos hujan di wilayah Bogor. Hasil penelitian ini adalah wilayah Bogor dapat dibagi menjadi 2 cluster yaitu cluster 1 kategori curah hujan sedang dan cluster 2 kategori curah hujan tinggi dengan perbandingan nilai kerapatan cluster kedua metode menghasilkan nilai yang sama yaitu sebesar 49,4% sehingga kedua metode tersebut baik untuk digunakan dalam pembentukan cluster curah hujan di wilayah Bogor dan bisa dijadikan sebagai rekomendasi bagi instansi terkait penggunaan data curah hujan seperti LAPAN dan BMKG.