Claim Missing Document
Check
Articles

Found 26 Documents
Search

Perbandingan Kinerja Peta Kendali Exponentially Weighted Moving Average dan Peta Kendali Double Exponentially Weighted Moving Average dalam Pengendalian Kualitas Produksi Butsudan di PT. Maruki International Indonesia Sonya, Sonya; Herdiani, Erna Tri; Tinungki, Georgina Maria
ESTIMASI: Journal of Statistics and Its Application Vol. 6, No. 1, Januari, 2025 : Estimasi
Publisher : Hasanuddin University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20956/ejsa.v6i1.25751

Abstract

Quality control is an effort in the production process to maintain product quality and minimize the occurrence of defects. One of the quality control tools is a control chart. An exponentially weighted moving average (EWMA) control chart is used to detect small shifts in the process mean. The result of the development of the EWMA control chart is the double exponentially weighted moving average (DEWMA) control chart, which increases the exponential smoothing process, where the control chart is considered more sensitive in detecting small shifts in the process mean. This study aims to obtain a comparison of the performance of the EWMA and DEWMA control charts in controlling the quality of butsudan production at PT. Maruki International Indonesia. The results obtained show that the DEWMA control chart has better performance in detecting small shifts compared to the EWMA control chart based on the smallest ARL value, at λ=0.1 the DEWMA control chart has an ARL value 1.1363 which is smaller than the ARL of EWMA control chart is 1.2268.
Model Robust Geographically Weighted Regression pada Data Kemiskinan di Sulawesi Selatan Tahun 2019 Rahman, Aqilah Salsabila; Tinungki, Georgina Maria; Herdiani, Erna Tri
ESTIMASI: Journal of Statistics and Its Application Vol. 6, No. 2, Juli, 2025 : Estimasi
Publisher : Hasanuddin University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20956/ejsa.v6i2.18046

Abstract

Geographically Weighted Regression (GWR) is a method of spatial analysis that can be used to perform analysis by assigning weights based on the geographical distance of each observation location and the assumption of having spatial heterogenity. The result of this analysis is an equation model whose parameter values apply only to each observation location and are different from other observation locations. However, when there are outliers at the observation location, a more robust estimation method is needed. One of the robust methods that can be applied to the GWR model is the Least Absolute Deviation method. In this study, model estimation was carried out on the factors that affect poverty in South Sulawesi in 2019 using Robust Geographically Weighted Regression (RGWR) with the Least Absolute Deviation (LAD) method. Determination of weighting is done by using the adaptive kernel bisquare weighting function. The results obtained are RGWR models which are different and apply only to each district/city in South Sulawesi. In addition, it was also found that the RGWR model with the LAD method was the best model for data that experienced spatial heterogenity and contained outliers.
THE APPLICATION OF GUMBEL COPULA TO ESTIMATE VALUE AT RISK WITH BACKTESTING IN TELECOMMUNICATION STOCK Najiha, Alimatun; Herdiani, Erna Tri; Tinungki, Georgina Maria
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 17 No 1 (2023): BAREKENG: Journal of Mathematics and Its Applications
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (384.546 KB) | DOI: 10.30598/barekengvol17iss1pp0245-0252

Abstract

The Value at Risk (VaR) method refers to a statistical risk measurement tool used to determine the maximum loss of an investment, while the distribution that must be met is the normal distribution. This is not in line with the actual situation, because the distribution of the return value is found to be not normally distributed but depends on market conditions that occurred at that time, thus invalidating the VaR estimate and resulting in greater portfolio risk. Therefore, in this study, the estimation of risk value will be carried out using the Gumbel Copula method which can model the dependency structure between stocks and is flexible enough to model financial return data from https://finance.yahoo.com/. The parameter estimates produced by the Gumbel Copula method are then used to calculate the VaR at 90%, and 99% confidence levels. The resulting VaR values ​​are 0,076 and 0.231. To test the feasibility of the VaR model, backtesting was carried out and concluded that the VaR value obtained was valid and suitable for use in the risk assessment of PT. XL Axiata Tbk and PT. Telkomunikasi Indonesia Tbk.
PERFORMANCE COMPARISON OF K-MEDOIDS AND DENSITY BASED SPATIAL CLUSTERING OF APPLICATION WITH NOISE USING SILHOUETTE COEFFICIENT TEST Akbar, Taufiq; Tinungki, Georgina Maria; Siswanto, Siswanto
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 17 No 3 (2023): BAREKENG: Journal of Mathematics and Its Applications
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol17iss3pp1605-1616

Abstract

Cluster analysis is a technique for grouping objects in a database based on their similar characteristics. The grouping results are said to be good if each cluster is homogeneous, and can be validated using the silhouette coefficient test. However, the presence of outliers in the data can affect the grouping results, so methods that are robust to outliers are used, such as K-Medoids and Density-Based Spatial Clustering of Applications with Noise. The purpose of this study is to compare the results and performance of the two methods using the silhouette coefficient test on data on human development indicators in South Sulawesi Province in 2021. The results of the analysis show that K-Medoids produced 2 groups, namely the districts/cities group which has indicators of human development that consist of 21 districts/cities, and the high group, which consists of 3 districts/cities, while Density-Based Spatial Clustering of Application with Noise produces 1 group that has the same characteristics, which consists of 19 districts/cities, and the remaining 5 districts/cities are identified as noise. Based on the silhouette coefficient test, K-Medoids have a greater value than Density-Based Spatial Clustering of Application with Noise, namely 0,635 and 0,544, respectively, so that K-Medoids have better performance.
Melacak Melacak Jejak Pa'busur: Investigasi Agresivitas dan Pemetaan Wilayah Rawan sebagai Upaya Meningkatkan Sense of Security Masyarakat di Kota Makassar Muh. Hadrianto; Chendra, Rita Ruth Chendra; Abdul Fathin Fawwaz; Amirullah, Andini Riantika Putri Amirullah; Hamzah, Hadi Siswadi Hamran; Georgina Maria Tinungki
Hasanuddin Journal of Sociology (HJS) VOLUME 6, ISSUE 2, 2024
Publisher : Department of Sociology Faculty of Social and Political Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Fenomena kriminalitas di Kota Makassar, khususnya tindak pidana pa'busur, perlu mendapat perhatian serius karena berdampak pada keamanan masyarakat. Tindak pidana pa'busur melibatkan penggunaan busur dan anak panah sebagai senjata dan sering dilakukan secara acak. Penelitian ini bertujuan untuk mengidentifikasi dan menganalisis faktor penyebab serta memetakan wilayah rawan tindak pidana pa'busur di Kota Makassar guna meningkatkan keamanan masyarakat. Penelitian ini menggunakan pendekatan metode campuran dengan metodologi kualitatif dan kuantitatif. Data primer dikumpulkan melalui observasi dan wawancara dengan pelaku dan korban. Analisis kualitatif menggunakan model analisis interaktif Miles & Huberman, sedangkan analisis kuantitatif menggunakan klastering K-Means untuk memetakan wilayah rawan. Hasil penelitian menunjukkan bahwa faktor lingkungan, dendam, dan perlindungan diri merupakan faktor utama yang menyebabkan tingginya angka tindak pidana pa'busur. Pemetaan kerentanan mengkategorikan wilayah di Kota Makassar menjadi tiga kategori, yaitu aman, rentan, dan sangat rentan. Wilayah Biringkanaya dan Tallo diidentifikasi sebagai wilayah yang sangat rentan. ABSTRAK Fenomena kriminalitas di Kota Makassar, khususnya pa'busur , memerlukan perhatian serius mengingat dampaknya terhadap rasa aman masyarakat. Pa'busur adalah kejahatan yang menggunakan busur dan anak panah sebagai senjata, seringkali dilakukan secara acak. Penelitian ini bertujuan mengidentifikasi dan menganalisis faktor penyebab serta memetakan wilayah rawan pa'busur di Kota Makassar guna meningkatkan rasa aman masyarakat. Metode penelitian yang digunakan adalah metode campuran ( mixed-methods ) dengan pendekatan kualitatif dan kuantitatif. Data primer diperoleh melalui observasi, wawancara dengan pelaku dan korban. Analisis kualitatif menggunakan model analisis interaktif Miles & Huberman, sementara analisis kuantitatif menggunakan metode K-Means clustering untuk memetakan wilayah rawan. Hasil penelitian menunjukkan bahwa faktor lingkungan, balas dendam, dan perlindungan diri adalah penyebab utama tingginya angka pa'busur . Pemetaan wilayah rawan mengelompokkan daerah di Kota Makassar menjadi tiga kategori: tidak rawan, rawan, dan sangat rawan, dengan Biringkanaya dan Tallo sebagai wilayah sangat rawan.
Did investment opportunity moderate the influence of the COVID-19 crisis on dividend policy? Hartono , Powell Gian; Tinungki, Georgina Maria; Suade, Yuyun Karystin Meilisa; Rahardja, Liana; Triany, Novika Ayu; Tyas, Isthi Wahyuning; Hartono, Patrick Gunawan
Jurnal Manajemen dan Pemasaran Jasa Vol. 17 No. 2 (2024): September
Publisher : Lembaga Penerbit Fakultas Ekonomi dan Bisnis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25105/v17i2.20006

Abstract

During the COVID-19 crisis, the investment opportunity experienced a low condition, indicated by a decrease in the market price to book value during the crisis, believed to moderate the impact of the COVID-19 crisis on dividend policy, specifically focusing on companies within the real estate and property sector in Indonesia. Therefore, this study examines the effect of the COVID-19 crisis, measured by GDP growth, on dividend policy moderated by investment opportunity. Employing a quantitative approach, the research spans from 2014 to 2021, using a purposive sampling technique to select 31 real estate and property sector companies as samples. Statistical analysis is conducted using dynamic panel data regression, employing the System-Generalized Method of Moments with a Two-Step estimator to produce more efficient parameter estimates and accommodate the dynamics of dividend policy. The findings reveal that during the COVID-19 crisis, companies in this sector tended to adopt higher dividend policies than non-crisis periods. Furthermore, investment opportunity was proven to positively moderate the influence of the COVID-19 crisis, proxied by GDP growth, on dividend policy. This study has implications for company management when considering investment opportunities that can moderate dividend policy during a crisis. Additionally, it advises investors to pay attention to the moderation of investment opportunities on the impact of the COVID-19 crisis on dividend policy to achieve optimal stock investment returns, especially dividend returns. The originality of this research lies in testing the moderation of investment opportunity on the impact of the COVID-19 crisis on dividend policy.