Articles
Pengaruh Self Efficacy terhadap Kemampuan Pemecahan Masalah dalam Menyelesaikan Soal Skala
Amalia, Hilda;
Sari, Indah Puspita
ANARGYA: Jurnal Ilmiah Pendidikan Matematika Vol 7, No 1 (2024)
Publisher : Universitas Muria Kudus
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.24176/anargya.v7i1.12557
The objective of this research was to ascertain the impact of self efficacy on problem solving ability in solving scale problems in class VIIB students of SMP Negeri 5 Cimahi. The subject of this study is 40 students in grade VIIB with 36 random samples. The type of research used is correlation analysis. The research instrument used is by distributing a self-efficacy questionnaire and a test of mathematical problem-solving ability. The data that has been obtained are then analyzed through classical assumption tests, Pearson correlation tests, and significance tests (t-test). Based on the analysis of questionnaire data and the mathematical problem-solving ability test, a correlation test score was obtained which has a sig value of 0.000 and a correlation amount of 0.775 which means that there is a correlation between Self Efficacy and Problem-Solving Ability, this shows that there is a direct correlation between the two variables. In addition, the Sig value was obtained from the t-test with a magnitude of 0.000 which means that the value does not exceed the significance level of 0.05, this shows that there is a unidirectional relationship and has a considerable influence. So it can be concluded that Problem-Solving Ability in solving scale problems is influenced by Self Efficacy
PENERAPAN FEATURE WEIGHTING OPTIMIZED PADA NAÏVE BAYES UNTUK PREDIKSI PROSES PERSALINAN
Amalia, Hilda;
Pohan, Achmad Baroqah;
Masripah, Siti
Jurnal Pilar Nusa Mandiri Vol 15 No 1 (2019): Pilar Nusa Mandiri : Journal of Computing and Information System Periode Maret 2
Publisher : LPPM Universitas Nusa Mandiri
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (918.778 KB)
|
DOI: 10.33480/pilar.v15i1.3
Birth of a baby is something that is very desirable for every married couple. All parties expect safety for mothers and babies who have just been born. Medical personnel make various efforts to help the delivery process run smoothly and the mother and baby survive. But in the labor process not all the baby's birth process runs smoothly. Problems often occur during labor. There are several obstacles so that there is a risk of labor, namely maternal and infant mortality. Every mother wants to be able to give birth to a baby normally, but due to medical reasons the delivery process is done by cesarean. The act of choosing a type of delivery faster can affect the safety of the mother and baby. The selection of the cesarean method is carried out late so it will increase the risk of maternal and infant mortality. For this reason, it is necessary to conduct research by using labor delivery data so that they can choose the right type of labor. In this study the classification of maternity labor will be carried out with data mining methods, namely Naive Bayes, which are improved by using the Optimize Weight (PSO) method. Naive Bayes was able to produce a high accuracy value for processing labor data for mothers, namely 94%. The final results of this study obtained the value of naïve bayes performance that can be improved by the Optimize Weights (PSO) method to be better at 98%
PERBANDINGAN METODE DATA MINING SVM DAN NN UNTUK KLASIFIKASI PENYAKIT GINJAL KRONIS
Amalia, Hilda
Jurnal Pilar Nusa Mandiri Vol 14 No 1 (2018): Pilar Nusa Mandiri : Journal of Computing and Information System Periode Maret 2
Publisher : LPPM Universitas Nusa Mandiri
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (805.238 KB)
|
DOI: 10.33480/pilar.v14i1.80
Data mining merupakan suatu metode yang telah banyak digunakan untuk melakukan penemuan ilmu pengetahuan dari kumpulan dataset yang selama ini hanya disimpan tanpa dikelola lebih lanjut. Dalam dunia kesehatan penggunaan metode data mining telah banyak membantu dunia kesehatan dalam membuat prediksi mengenai masalah kesehatan yang dihadapi. Salah satu penyakit yang sangat mematikan yaitu penyakit ginjal kronik. Penyakit ginjal kronik dapat menyebabkan banyak penyakit mematikan lainnya. Tingkat perkembangan penyakit ginjal kronik ini juga terus meningkat dari tahun ke tahunnya. Dalam penelitian data penyakit ginjal kronis akan diolah dengan metode data mining yaitu Supper vector Machine dan Neural network. Keduanya merupakan metode data mining yang diketahui memiliki kinerja yang baik untuk data dengan atribut dan parameter yang banyak dan beragam. Dari Hasil penelitian diperoleh hasilnya yaitu metode neural network menghasilkan nilai akurasi 93.36% dan SVM dengan nilai 95.16%.
SISTEM PENUNJANG KEPUTUSAN KESEHATAN UNTUK HIPERTENSI MENGGUNAKAN ALGORITMA C4.5
Amalia, Hilda;
Evicienna, Evicienna
Jurnal Pilar Nusa Mandiri Vol 9 No 1 (2013): Pilar Nusa Mandiri : Journal of Computing and Information System Periode Maret 20
Publisher : LPPM Universitas Nusa Mandiri
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (529.629 KB)
|
DOI: 10.33480/pilar.v9i1.120
Hypertension is a cardiovascular disease that causes 4.5% of the global disease burden. Hypertension is a major risk factor for heart problems and can be said as the "silent killer" because there are no specific signs and can cause serious illness if left untreated for a long time. Decision support system for hypertension can be used to obtain the results of the decision of the cases, one of them using the decision tree method. Hypertension data will be processed using the method of decision tree algorithm C4.5 through software RapidMiner and will result in a decision support rules, the value of accuracy, and AUC than the rule. After testing the accuracy of the values obtained on the C4.5 algorithm by 76.6%, AUC values for 0862 with a good level of diagnostic classification.
STUDENT PERFORMANCE ANALYSIS USING C4.5 ALGORITHM TO OPTIMIZE SELECTION
amalia, Hilda;
Yunita, Yunita;
Puspita, Ari;
Lestari, Ade Fitria
Jurnal Pilar Nusa Mandiri Vol 16 No 2 (2020): Pilar Nusa Mandiri : Journal of Computing and Information System Publishing Peri
Publisher : LPPM Universitas Nusa Mandiri
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.33480/pilar.v16i2.1348
Education is one of the fields that generate heaps of data. Pile of data that can utilized by higher education institutions to improve tertiary performance. One way to process data piles in the education is to use data mining or called education data mining. The quality assessment of educational institutions conducted by the community and the government is strongly influenced by student performance. Students who have poor performance will have a negative impact on educational institutions. Student data is processed to obtain valuable knowledge regarding the classification of student performance. One method of data mining is the C4.5 algorithm which is known to be able to produce good classifications. In this research and optimization method will be used namely optimize selection on the c4.5 algorithm. Based on the research, it is known that the optimization selection optimization method can improve the performance of algorithm c4.5 from 85% to 87%.
APPLICATION OF DECISION TREE AND NAIVE BAYES ON STUDENT PERFORMANCE DATASET
amalia, Hilda;
Puspita, Ari;
Lestari, Ade Fitria;
Frieyadie, Frieyadie
Jurnal Pilar Nusa Mandiri Vol 18 No 1 (2022): Pilar Nusa Mandiri : Journal of Computing and Information System Publishing Peri
Publisher : LPPM Universitas Nusa Mandiri
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.33480/pilar.v18i1.2714
Student performance is the ability of students to deal with the entire academic series taken during school. Student performance produces two labels, namely successful and unsuccessful students. Successful students can graduate with excellent, excellent, and suitable performance labels. At the same time, students who have a label on average are students who get poor performance. Measurement of student performance is needed for every educational institution to take strategic steps to improve student performance. This study aimed to obtain a data mining method that worked well on student performance datasets. In this study, student performance datasets were processed, which had 11 indicators with one result label. Student performance datasets are processed using data mining methods, namely decision tree and nave Bayes, while the tool used for dataset processing is WEKA. The research results from processing student performance datasets obtained that the accuracy value for the decision tree method was 94.3132%, and the accuracy produced by the naive Bayes method was 84.8052%.
Penerapan Zahir Accounting Dalam Pengolahan Data Keuangan PT. Aneka Tusma
Azironia, Aghita;
Ade Fitria Lestari, Ade Fitria;
Amalia, Hilda;
Puspita, Ari
Jurnal Sistem Informasi Akuntansi Vol 5 No 1 (2024)
Publisher : LPPM Universitas Bina Sarana Informatika
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.31294/justian.v5i1.2949
Efficient and accurate financial data processing is a crucial factor in maintaining a company's financial stability.maintaining the company's financial stability. PT Aneka Tusma, a company that selling various types of home accessories and furniture products, realises the importance of good of good financial data management to support operational activities and make the right decisions. making the right decisions. This research aims to examine the use of Zahir Accounting Version 6 as a tool for financial data processing at PT. Aneka Tusma, whose accounting process is currently manual. Zahir Accounting is one of the most popular accounting software in Indonesia, which provides various features and modules to help the recording process, reporting, and financial analysis
Rancang Bangun Sistem Informasi Bersih Bersama
yunita, yunita;
Satya, Muhammad Taufik;
Pratama, Muhammad Ngurah Arya;
Amalia, Hilda;
Pohan, Achmad Baroqah
IMTechno: Journal of Industrial Management and Technology Vol. 5 No. 1 (2024): Vol. 5 No. 1 (2024): Januari 2024
Publisher : LPPM Universitas Bina Sarana Informatika
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.31294/imtechno.v5i1.2409
Sampah dan lingkungan salah satu isu yang semakin mendesak saat ini, meingkatnya jumlah penduduk berbanding lurus dengan meningkatnya jumlah sampah dan berbagai masalah lingkungan yang semakin kompleks. Meningkatnya jumlah penduduk tidak mempengaruhi kesadaran penduduk untuk menjaga lingkungannya. Hal ini menimbulkan berbagai masalah baru seperti bay tak sedap, penyakit, dan bencana banjir. Berbagai masalah Kesehatan lainnya. Oleh karena itu diperlukan kesadaran kolektif masyarakat unruk menjaga lingkungan terutama soal pembersihan sampah. Beberapa upaya telah dilakukan untuk menangani masalah sampah tetapi hanya sebatas menumbuhkan kesadaran masyarakat untuk menjaga kebersihan dan bagaimana mengelola sampah, sedangkan untuk membersihkan sampah atau lingkungan yang sudah tercemar oleh sampah belum ada upaya yang dilakukan hanya sebatas membersihkan wilayah sekitarnya saja. Berdasarkan latar belakang tersebut kami membuat sebuah aplikasi Bersih Bersama berbasis web dengan menggunakan metode waterfall untuk mengajak masyarakat dari seluruh wilayah untuk berpartisipasi membersihkan wilayah yang sudah tercemar maupun memberikan informasi mengenai wilayah yang tercemar agar ditindak lanjuti. Sehingga memberi manfaat dalam memfasilitasi kegiatan kebersihan lingkungan secara efektif dan efisien serta meningkatkan partisipasi masyarakat dalam menjaga kebersihan lingkungan.
PENERAPAN MODEL WATERFALL DALAM PERANCANGAN APLIKASI MANAJEMEN EVENT PB PERSATUAN CARTUR SELURUH INDONESIA (PERCASI) BERBASIS WEBSITE
Amalia, Hilda;
Puspita, Ari;
Utami, Retno;
Mazia, Lia;
Lestari, Ade Fitria
IJIS - Indonesian Journal On Information System Vol 9, No 2 (2024): SEPTEMBER
Publisher : POLITEKNIK SAINS DAN TEKNOLOGI WIRATAMA MALUKU UTARA
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.36549/ijis.v9i2.347
Penelitian ini bertujuan untuk menerapkan model Waterfall dalam perancangan aplikasi manajemen event berbasis web untuk PB Persatuan Cartur Seluruh Indonesia (PERCASI), untuk memenuhi kebutuhan sistem manajemen yang efisien dalam menyelenggarakan berbagai acara. Dengan menggunakan pendekatan Waterfall yang sistematis, penelitian ini meliputi analisis kebutuhan, desain, implementasi, pengujian, dan pemeliharaan aplikasi. Aplikasi ini dibangun menggunakan framework CodeIgniter (CI), yang memungkinkan pengembangan yang cepat dan terstruktur. Aplikasi ini memungkinkan akses data secara langsung oleh PB Percasi dan Pengda Tingkat Provinsi, di mana Pengda dapat menginput data peserta dan Admin dapat memeriksa jumlah peserta serta menghitung biaya registrasi dengan efisien. Aplikasi ini diharapkan dapat meningkatkan transparansi dan efisiensi dalam manajemen event, serta menjadi alat yang bermanfaat bagi PERCASI dalam menjalankan tugas dan fungsinya secara optimal.Kata Kunci : WaterFall, PERCASI, CodeIgniter
Pengembangan Model Triase Berbasis Intervensi Cest (Caring, Edukasi dan Patient Safety) dalam Meningkatkan Kepuasan Pasien
Panjaitan, Yunita;
Haloho, Maria Artaulina;
Suryani, Irma;
Amalia, Hilda
Faletehan Health Journal Vol 11 No 03 (2024): Faletehan Health Journal, November 2024
Publisher : Universitas Faletehan
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.33746/fhj.v11i03.739
The suboptimal knowledge and understanding of patients and their families regarding the triage system in emergency department can lead to conflicts due to the feeling of neglected and not receiving definitive action. Therefore, developing a triage model with active interventions of caring, education, and patient safety is required in triage services at emergency department. This study aimed to determine the effects of caring, education, and patient safety (CEST)-based triage model on the level of patient satisfaction at Hermina Hospital, Indonesia. This study used a quantitative approach with a true experimental design using a post-test only group control design. The samples in this study were 30 intervention groups and 30 control groups selected with simple random sampling techniques. The statistical test used was an independent t-test. The results of this study showed that there was a significant difference in patient satisfaction between the control group and the intervention group. The mean of the control group was 26.07 and 29.70 for the intervention group. The p-value of the effects of implementing the CEST triage model between the control and intervention groups was 0.002 (< 0.05). Developing the CEST-based triage model can improve patient satisfaction by providing a sense of caring, education, and implementing patient safety in the hospital.