Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Proceeding of the Electrical Engineering Computer Science and Informatics

Authentication Login E-Library with Multimodal Biometrics System Pandapotan Siagian; Kurniabudi .; Erick Fernando; Herry Mulyono
Proceeding of the Electrical Engineering Computer Science and Informatics Vol 1: EECSI 2014
Publisher : IAES Indonesia Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (888.44 KB) | DOI: 10.11591/eecsi.v1.370

Abstract

Previous studies with the title of the login authentication e-library with method of CBIR for matching face, have proved reaching the level of accuracy about 75%. This multiple verification of QR-code/QR-CMBS this process data among other things the identity ID, fingerprint patterns and pattern signatures. Each user can have a QR-CMBS, which is used to login to the e-library. This research-oriented system development with application authentication login with QR code/QR-QR, Data of the CMBS will store data from bineri identity ID, fingerprint patterns and pattern signatures.The advantage of Retrieval CBIR is the popularity and test result with a high degree of accuracy and time parameters. The results obtained from QR-CMBS every training, i.e. classify and determine the value of fingerprint patterns and signatures for each label. Feature extraction results are temporarily stored in the session database and compare the features that are stored in the database image classification. The most similar classification results will be displayed, i.e. QR-CMBS, fingerprints and signatures, as well as verification of login. The application login authentication system of e-library uses to calculate the similarity of this research, will be able to extract the feature of colour, texture and edge of a multiple verification of QR-code/ QR-CMBS, fingerprint and signature by using the Prewitt gradient. The result of the extraction process feature is then used by the software in the learning process and calculates the similarity. Learning image contained in 3 classes features a picture that is stored in the database query 100 png images and the image of the sample test with the size 400 x 400. The results showed that the combination of the Prewitt filter extraction gradient magnitude. Verification data classification compared to the three classes, namely QR-CMBS, fingerprints and signatures contained in the database. Response time to find the most CMBS-QR is similar to 10 sample data, giving the effect of a higher degree of accuracy that is 97%.
Features Extraction on IoT Intrusion Detection System Using Principal Components Analysis (PCA) Sharipuddin Sharipuddin; Benni Purnama; Kurniabudi Kurniabudi; Eko Arip Winanto; Deris Stiawan; Darmawijoyo Hanapi; Mohd. Yazid Idris; Rahmat Budiarto
Proceeding of the Electrical Engineering Computer Science and Informatics Vol 7, No 1: EECSI 2020
Publisher : IAES Indonesia Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eecsi.v7.2098

Abstract

There are several ways to increase detection accuracy result on the intrusion detection systems (IDS), one way is feature extraction. The existing original features are filtered and then converted into features with lower dimension. This paper uses the Principal Components Analysis (PCA) for features extraction on intrusion detection system with the aim to improve the accuracy and precision of the detection. The impact of features extraction to attack detection was examined. Experiments on a network traffic dataset created from an Internet of Thing (IoT) testbed network topology were conducted and the results show that the accuracy of the detection reaches 100 percent.
Improving the Anomaly Detection by Combining PSO Search Methods and J48 Algorithm Kurniabudi Kurniabudi; Abdul Harris; Albertus Edward Mintaria; Darmawijoyo Hanapi; Deris Stiawan; Mohd. Yazid Idris; Rahmat Budiarto
Proceeding of the Electrical Engineering Computer Science and Informatics Vol 7, No 1: EECSI 2020
Publisher : IAES Indonesia Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eecsi.v7.2099

Abstract

The feature selection techniques are used to find the most important and relevant features in a dataset. Therefore, in this study feature selection technique was used to improve the performance of Anomaly Detection. Many feature selection techniques have been developed and implemented on the NSL-KDD dataset. However, with the rapid growth of traffic on a network where more applications, devices, and protocols participate, the traffic data is complex and heterogeneous contribute to security issues. This makes the NSL-KDD dataset no longer reliable for it. The detection model must also be able to recognize the type of novel attack on complex network datasets. So, a robust analysis technique for a more complex and larger dataset is required, to overcome the increase of security issues in a big data network. This study proposes particle swarm optimization (PSO) Search methods as a feature selection method. As contribute to feature analysis knowledge, In the experiment a combination of particle swarm optimization (PSO) Search methods with other search methods are examined. To overcome the limitation NSL-KDD dataset, in the experiments the CICIDS2017 dataset used. To validate the selected features from the proposed technique J48 classification algorithm used in this study. The detection performance of the combination PSO Search method with J48 examined and compare with other feature selection and previous study. The proposed technique successfully finds the important features of the dataset, which improve detection performance with 99.89% accuracy. Compared with the previous study the proposed technique has better accuracy, TPR, and FPR.
Co-Authors Abdul Harris Abdul Harris Abdul Harris Abdul Harris Abdul Harris Abdul Rahim Abdul Rahim Ahmad Heryanto Albertus Edward Mintaria Albertus Edward Mintaria Ammar panji Pratama Bedine Kerim Bedine Kerim Candra Adi Rahmat Chindra Saputra Darmawijoyo, Darmawijoyo Dede Andri Wahyudin Deris Stiawan Dodi Sandra Dodi Sandra Dr. Hendri, S.Kom., S.H., M.S.I., M.H Eko Arip Winanto Eko Arip Winanto Elvi Yanti Elvi Yanti Elvira Rosanda Erick Fernando Erick Fernando Erick Fernando B311087192 Fachruddin Febriyan Nurmansyah Harid, Harid Harris, Abdul Hendri Hendri Hendri Hendri Hendy Saryanto Herry Mulyono Ibnu Sani Wijaya Idris, Mohd. Yazid Idris, Mohd. Yazid Imam Rofi’i Irawan, Beni Irfan, Fadhel Muhammad Kurniabudi Lola Yorita Astri, Lola Yorita Minal Juadli Mintaria, Albertus Edward Mohd Yazid bin Idris Mohd Yazid Bin Idris Mohd. Yazid Idris Mohd. Yazid Idris Muhammad Rafly Ramadhan Muhammad Riza Pahlevi Mulyono, Herry Nabila Kamila Hasna Pandapotan Siagian Pareza Alam Jusia, Pareza Alam Purnama, Benni Putri Nawang Wulan Rahman saibi Rahmat Budiarto Rahmat Budiarto Realensi Realensi Rilis Pebriyanti Siringo Ringo Ryan Sihopong Parlindungan Siregar Samsuryadi Samsuryadi Setiawan Assegaf Sharipuddin, Sharipuddin Sharipuddin, Sharipuddin Shelby Amalia Sandi Siagian, Pandapotan Suwaldo Aris Ferry Hutabarat Syamsul Arifin Syifqi, Achmad Triokta Putra Ulil Amri, Nugraha Valensia, Vally Veronica Veronica VERONICA VERONICA WILLY RIYADI Winarno Wirmaini, Wirmaini Yudi Novianto Yudi Novianto Yundari, Yundari Zulwaqar Zain Mohtar