Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Data Insights

Klasifikasi Dataset Diabetes menggunakan Algoritma K-Nearest Neighbors Fitri Diana Musa; M. Al Haris; Dannu Purwanto; Saeful Amri; Alwan Fadlurohman; Ariska Fitriyana Ningrum
Journal of Data Insights Vol 2 No 1 (2024): Journal of Data Insights
Publisher : Department of Sains Data UNIMUS Universitas Muhammadiyah Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Data mining merupakan suatu metode yang baik untuk menangani data skala besar. Performasi menjadi penting dalam metode data mining. Salah satu metode yang memiliki performasi terbaik adalah K-Nearest Neighbor (KNN). Artikel ini membahas terkait performasi K-NN. Data yang digunakan pada penelitian ini adalah Diabetes. Data dibagi menjadi 80% data trainingdan 20% data testing. Dengan menggunakan 11 tetangga terdekat, model menghasilkan akurasi sebesar 0.765625. Angka ini mencerminkan kinerja yang baik. Metrik kritis termasuk akurasi sebesar 0.77, presisi sebesar 0.80, dan recall sebesar 0.85. Hasil ini menunjukkan bahwa model KNN memiliki potensi untuk mengklasifikasikan pasien diabetes dengan akurasi yang baik.
Fuzzy Gustafson Kessel for Infrastructure Development Strategy in South Sumatra Province: Fuzzy Gustafson Kessel Untuk Strategi Pembangunan Infrastruktur Di Provinsi Sumatera Selatan Ariska Fitriyana Ningrum; Oktaviana Rahma Dhani; Febi Anggun Lestari; Zahra Aura Hisani; Alwan Fadlurohman
Journal of Data Insights Vol 2 No 2 (2024): Journal of Data Insights
Publisher : Department of Sains Data UNIMUS Universitas Muhammadiyah Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26714/jodi.v2i2.650

Abstract

Infrastructure development is a strategic element in improving public services and economic growth. South Sumatra Province, with its large economic potential, faces challenges in managing efficient and sustainable infrastructure development. This research aims to apply the Fuzzy Gustafson Kessel (FGK) method in decision making related to infrastructure development in South Sumatra Province. FGK combines fuzzy logic with Gustafson Kessel clustering algorithm to handle uncertainty and data variation from various stakeholders. The data used in this study includes population and geographic census data from the Central Bureau of Statistics of South Sumatra Province in 2023, with five indicators: population, area, population growth rate, population density, and poverty rate. The results show that South Sumatra is divided into three main clusters based on its infrastructure and demographic characteristics. This clustering is expected to improve the effectiveness and efficiency of infrastructure development decision-making, provide more appropriate policy recommendations, and potentially be applied in other regions with similar challenges.