Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : VALENSI

Synthesis of Antibacterial and Biodegradable Bioplastic Based on Shrimp Skin Chitosan and Durian Skin Cellulose with the Microwave Assistance Mashuni Mashuni; La Ode Ahmad; Emiliana Sandalayuk; Fitri Handayani Hamid; M Jahiding; Andi Muhammad Naufal Khaeri
Jurnal Kimia Valensi Jurnal Kimia VALENSI Volume 8, No. 1, May 2022
Publisher : Syarif Hidayatullah State Islamic University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jkv.v8i1.23233

Abstract

This study aimed to obtain the best composition in the synthesis of antibacterial bioplastics made from chitosan from shrimp skin (SS) and cellulose from durian skin (DS). The research method began with the isolation of chitin from SS. Then it was deacetylated using a microwave (MW) at 60 °C for 15 minutes at 400 watts of power in an alkaline solution. The extraction of cellulose from DS through delignification using the MW for 20 minutes, 300 watts of power in Na2SO3 solution. Synthesis of bioplastics is made from variations in the composition of chitosan (8, 12 and 16% w/w), cellulose and glycerol as a plasticizer. The characterization of bioplastics with FTIR obtained functional groups O–H, C–H, C=O, C–N and N–H amines, and SEM characterization obtained bioplastic has fibre and pore size 15.429 µm. The best bioplastic characteristics were the composition of 12 % chitosan, with tensile strengths of 13.28 Mpa, water resistance of 79 % and the ability to degrade 52.67% after 15 days have met international plastic standards (ASTM 5336). The antibacterial activity of bioplastics against Escherichia coli and Staphylococcus aureus with the Disc diffusion method showed the presence of moderate zones category of inhibition so that the resulting bioplastics can be recommended as food packaging that is environmentally friendly and antibacterial.
Chemical Characterization and Antibacterial Activities of Bio-oil from Durian Shell Pyrolysis Mashuni, Mashuni; Kadidae, La Ode; Jahiding, M; Hamid, Fitri Handayani; Kadir, Waris Abdul; Khaeri, Andi Muhammad Naufal
Jurnal Kimia Valensi Jurnal Kimia VALENSI, Volume 10, No. 1, May 2024
Publisher : Syarif Hidayatullah State Islamic University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jkv.v10i1.37674

Abstract

Foodborne bacteria cause food spoilage, usually Staphylococcus aureus and Escherichia coli. Thus, synthetic preservatives are employed in food preservation to prevent food spoilage caused by microorganisms. Excessive use of synthetic preservatives can cause disease. Bio-oil has become a natural preservative because of its high phenolic content. However, bio-oil still requires purification because the initial bio-oil (grade 3) still contains carcinogenic compounds that are dangerous for consumption. Therefore, this study aims to determine the components of the bio-oil compound after purification and its effectiveness as an antibacterial. Durian shell (DS) is pyrolyzed in a heating reactor without oxygen at a temperature of 330–600ºC (flow rate 6ºC/minute) with a 2-3 cm material size. Furthermore, bio-oil purification includes stages of filtration using activated zeolite, fractional distillation at 70–200ºC (grade 2), and filtration using activated charcoal (grade 1). Bio-oil purification includes stages of filtration using active zeolite and activated charcoal (grade 2), and fractional distillation at a temperature of 150–200ºC (grade 1). Based on Gas Chromatography-Mass Spectrometry (GC-MS) analysis, grade 2 and grade 1 contain the major compounds 1,4-dimethyl-1h-imidazole and acetic acid. The research showed that bio-oil grades 1 and 2, when used at a 30% concentration, exhibit antibacterial strong effects against Staphylococcus aureus and Escherichia coli. These findings suggest that bio-oil grades 1 and 2 could be valuable natural preservatives.