Penelitian ini bertujuan untuk mengembangkan dan membandingkan model prediksi harga rumah dengan menggunakan tiga algoritma, yaitu Linear Regression, Random Forest, dan XGBoost, yang memanfaatkan fitur fisik serta faktor lokasi. Variabel yang dianalisis mencakup berbagai karakteristik properti seperti ukuran tanah, luas bangunan, jumlah kamar tidur, kondisi bangunan, serta aspek lokasi seperti kedekatan dengan pusat kota dan akses ke fasilitas publik. Tahapan penelitian ini mencakup pembersihan data untuk mengeliminasi data yang tidak sesuai, transformasi variabel agar seragam, dan rekayasa fitur baru yang dapat meningkatkan ketepatan prediksi model. Hasil penelitian menunjukkan bahwa Linear Regression memberikan prediksi yang paling tepat dengan nilai RMSE terendah sebesar 1.150,87, lebih baik dibandingkan dengan Random Forest yang menghasilkan RMSE sebesar 1.183,11 dan XGBoost yang mencapai 1.200,33. Linear Regression menunjukkan keunggulan karena mampu menangani hubungan linier antar variabel dengan harga rumah. Walaupun Random Forest dan XGBoost lebih efektif untuk menangani hubungan non-linier, Linear Regression lebih optimal dalam penelitian ini karena hubungan antar variabel lebih sederhana. Penelitian ini diharapkan memberikan wawasan yang bermanfaat bagi pengembang properti dan lembaga keuangan dalam pengambilan keputusan yang lebih efisien dan akurat, serta memberikan perkiraan harga rumah yang lebih objektif. Model ini juga dapat digunakan untuk memperkirakan harga rumah di masa depan dengan lebih tepat, yang pada gilirannya dapat mengurangi ketidakpastian dalam pasar properti dan memfasilitasi pengambilan keputusan yang lebih berbasis data.