Claim Missing Document
Check
Articles

Found 12 Documents
Search

Evaluasi Kinerja Spectral Biclustering dalam Identifikasi Potensi Produksi Komoditas Hortikultura di Indonesia Merryanty Lestari P; I Made Sumertajaya; Erfiani
Limits: Journal of Mathematics and Its Applications Vol. 21 No. 3 (2024): Limits: Journal of Mathematics and Its Applications Volume 21 Nomor 3 Edisi No
Publisher : Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Biclustering merupakan metode penggerombolan dua arah untuk menemukan subset baris dan kolom dari suatu matriks data. Spectral biclustering merupakan salah satu algoritma dari biclustering. Algoritma spectral mempunyai tiga metode normalisasi matriks antara lain independent rescaling of rows and columns , bistochastization , dan log . Penerapan spectral biclustering bertujuan untuk mengidentifikasi potensi produksi komoditas hortikultura jenis sayuran di Indonesia. Metode normalisasi bistochastization menghasilkan bicluster optimal dengan nilai rataan mean squared residue terkecil sebesar 0,079593. Bicluster yang dihasilkan sebanyak 5 bicluster. Bicluster 1 dan 2 terdiri dari wilayah Papua dan Sulawesi Tenggara memiliki potensi produksi jenis tanaman sayuran mayoritas kategori rendah di antaranya kentang, bawang merah, bawang putih, dan bawang daun. Bicluster 3 dan 4 terdiri dari sebagian besar wilayah Kalimantan, Riau, Sumatera Selatan, Nusa Tenggara Timur, dan Maluku dengan potensi produksi mayoritas terkategori sedang di antaranya cabai rawit, tomat, buncis, labu siam, dan melinjo. Bicluster 5 merupakan wilayah Jawa, Bali, Nusa Tenggara Barat, sebagian besar wilayah Sumatera dan Sulawesi, serta Kalimantan Selatan. Bicluster 5 memiliki potensi produksi terkategori tinggi pada jenis sayuran sawi, kacang panjang, terung, ketimun, dan jengkol.
Study of Small Area Estimation when Nighttime Lights as an Auxiliary Information is Measured with Error: Kajian Pendugaan Area Kecil dengan Kesalahan Pengukuran pada Peubah Penyerta Nighttime Lights Surya, Ardi; Indahwati; Erfiani
Indonesian Journal of Statistics and Applications Vol 8 No 1 (2024)
Publisher : Statistics and Data Science Program Study, IPB University, IPB University, in collaboration with the Forum Pendidikan Tinggi Statistika Indonesia (FORSTAT) and the Ikatan Statistisi Indonesia (ISI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v8i1p47-57

Abstract

The need for accelerated development requires rapid data collection. In today's increasingly advanced technological landscape, the utilization of big data emerges as a highly reliable solution for data collection. One exemplary form of big data is the daily capture of satellite imagery, particularly nighttime lights (NTL). NTL serves as a valuable product derived from satellite imagery and can be employed as an alternative dataset for analysis. This research utilizes Nighttime lights as an auxiliary variable to estimate the average household per capita expenditure in small areas, namely districts, employing the empirical best linear unbiased prediction Fay Herriot (EBLUP FH) method and small area estimation by incorporating measurement error effects on the covariate (SAE-ME). The study demonstrates that Nighttime lights can be employed as an alternative auxiliary variable for estimating the average per capita expenditure in districts, as evidenced by a lower RRMSE compared to direct estimation results. However, the measurement error effects on the NTL covariate should be considered by employing a model that takes into account measurement errors. The SAE-ME method provides estimated average expenditure values at the district level that closely align with BPS publications, with an average RRMSE per district of 7.5 percent.