Claim Missing Document
Check
Articles

Found 7 Documents
Search

ROLE OF THE PRINCIPAL IN CREATING A POSITIVE CULTURE AND SCHOOL BRANDING AT MTS N 5 KARANGANYAR APRILIA, ANISA NUR; HAFIZHOH, ASMA’ ZUHDIYYAH; NABILAH, ANISAH; KHAFIBAH, UMI
MANAJERIAL : Jurnal Inovasi Manajemen dan Supervisi Pendidikan Vol. 3 No. 4 (2023)
Publisher : Pusat Pengembangan Pendidikan dan Penelitian Indonesia (P4I)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51878/manajerial.v3i4.3645

Abstract

This study aims to analyze the strategies implemented by the principal to create a positive culture and school branding at MTs N 5 Karanganyar. The method used is descriptive qualitative research, with data collection through observation, interviews and literature studies. The subject of this study was the principal. The results of the study showed that the principal implemented several steps, including: aligning the perception of vision and mission, creating a supportive environment, being open to input, criticism and suggestions, building branding through social media, and periodic evaluations. This study is expected to be a reference for principals, teachers and other stakeholders in designing effective steps to build a positive school culture and good school branding. ABSTRAKPenelitian ini bertujuan untuk menganalisis strategi yang diterapkan kepala sekolah dalam menciptakan budaya positif dan branding sekolah di MTs N 5 Karanganyar. Metode yang digunakan adalah penelitian deskriptif kualitatif, dengan pengumpulan data melalui observasi, wawancara dan studi literatur. Subyek penelitian ini adalah kepala sekolah. Hasil penelitian menunjukkan bahwa kepala sekolah menerapkan beberapa langkah, antara lain: menyelaraskan persepsi visi dan misi, menciptakan lingkungan yang mendukung, terbuka terhadap masukan, kritik dan saran, membangun branding melalui media sosial, dan evaluasi berkala. Kajian ini diharapkan dapat menjadi acuan bagi kepala sekolah, guru dan pemangku kepentingan lainnya dalam merancang langkah efektif membangun budaya sekolah yang positif dan branding sekolah yang baik.
Detection of Tuberculosis Disease in Lung X-ray Images Using the DenseNet121 Method Madyono, Madyono; Nabilah, Anisah
International Journal of Engineering, Science and Information Technology Vol 5, No 2 (2025)
Publisher : Malikussaleh University, Aceh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52088/ijesty.v5i2.853

Abstract

Tuberculosis (TB) is a lung infection caused by Mycobacterium tuberculosis and can be detected through chest X-ray imaging. In this study, tuberculosis disease detection was carried out using the DenseNet121 method, a deep-learning architecture proven effective in medical image classification tasks. This study used a dataset of 4,200 lung X-ray images classified as positive or negative for TB. The DenseNet121 model was trained with this data to identify patterns in the X-ray images indicating tuberculosis infection. The results of the model evaluation showed high performance with a precision value of 0.91, a recall of 0.90, and an f1-score of 0.89. In addition, the model achieved an overall accuracy of 90.4%. The results of this study indicate that the DenseNet121 method can be a reliable tool in detecting tuberculosis from chest X-ray images so that it can assist medical personnel in the diagnosis process more quickly and accurately.
THE EFFECTIVENESS OF VIRAL MARKETING ON PURCHASE DECISIONS THROUGH CUSTOMER TRUST ON THE TOKOPEDIA PLATFORM Hendrawan, Diky Angga; Nabilah, Anisah; Hamiduddin, Ahmad Yahya; Harto, Harto
Indonesian Journal Of Business And Economics Vol. 7 No. 2 (2024)
Publisher : Universitas Kuningan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25134/ijbe.v7i2.11009

Abstract

Viral Marketing is a type of marketing that is low-cost because it relies on social media to spread information. The phenomenon of online shopping is increasingly becoming the choice of many people, because shopping online can save time without having to go to a physical location to shop. There are several factors that consumers need to consider before making a purchasing decision, such as trust, where in making online transactions it is important to have certainty, ease in finding the desired product, and clear information about the product and how to buy. This study was conducted using descriptive and verification methods, which then produced conclusions and suggestions. Samples were collected using the Incidental Sampling method, with a total of 205 respondents. Based on the analysis that has been done, this study proves that Viral Marketing has a significant influence on Customer Trust. Furthermore, Customer Trust also has a significant influence on Purchasing Decisions. In addition, Viral Marketing has a significant influence on Purchasing Decisions.
PELATIHAN PENERAPAN PERANGKAT TEKNOLOGI ARGUMEN MATEMATIS DENGAN MODEL INFUSION LEARNING UNTUK MENINGKATKAN KEMAMPUAN MANAGEMENT PEMBELAJARAN GURU Tristanti, Lia Budi; Hidayati, Wiwin Sri; Nabilah, Anisah; Rahmawanda, Farda; Putri, Nur Wahida
JMM (Jurnal Masyarakat Mandiri) Vol 8, No 5 (2024): Oktober
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jmm.v8i5.26268

Abstract

Abstrak: Pengajaran guru matematika SMP Kabupaten Jombang belum sepenuhnya meningkatkan kemampuan argumentasi siswa, dan belum ada perangkat teknologi khusus yang digunakan untuk membantu siswa dalam menyusun, menyajikan, atau mengevaluasi argumen sesuai dengan komponen Toulmin, yaitu data, warrant, qualifier, backing, dan klaim. Masalah ini menjadi fokus utama Pengabdian kepada Masyarakat (PkM) yang bertujuan untuk meningkatkan kemampuan management pembelajaran guru melalui penerapan perangkat teknologi argumen matematis dan model Infusion Learning. Kegiatan PkM ini melibatkan 32 guru MGMP Matematika SMP Kabupaten Jombang. Tahapan pelaksanaan PkM meliputi pelatihan, penerapan teknologi, Pendampingan dan evaluasi. System evaluasi yang digunakan meliputi tes untuk mengukur pengetahuan peserta terkait dengan materi, observasi untuk mengukur kemampuan managemen pembelajaran guru, dan angket untuk mengevaluasi pelaksanaan kegiatan. Hasil evaluasi menunjukkan bahwa pelatihan ini berhasil meningkatkan pemahaman peserta terhadap materi dengan persentase pemahaman peserta sebesar 86%, yang dikategorikan sebagai "baik", skor rata-rata keseluruhan dari semua komponen magemen pembelajaran guru adalah 85,3% pada kategori sangat baik, tanggapan peserta terhadap pelaksanaan kegiatan, kinerja narasumber, dan kepuasan umum juga menunjukkan hasil yang positif. PkM ini diharapkan dapat menjadi referensi empiris dalam dalam meningkatkan kemampuan managemen pembelajaran guru untuk memfasilitasi kemampuan argumentasi matematis siswa.Abstract: The teaching of middle school mathematics teachers in Jombang Regency has not yet fully enhanced students' argumentative abilities, and no specific technological tools have been used to assist students in constructing, presenting, or evaluating arguments according to Toulmin's components, namely data, warrant, qualifier, backing, and claim. This issue became the main focus of the Community Service Program (PkM), which aims to improve teachers' classroom management skills through the application of mathematical argument technology tools and the Infusion Learning model. The PkM activities involved 32 teachers from the Mathematics Subject Teachers Forum (MGMP) in Jombang Regency. The stages of PkM implementation include training, technology application, mentoring, and evaluation. The evaluation system used includes tests to measure participants' knowledge related to the material, observations to assess teachers' classroom management skills, and questionnaires to evaluate the implementation of the activities. The evaluation results show that the training successfully improved participants' understanding of the material, with a comprehension rate of 86%, which falls under the "good" category. The overall average score across all components of teachers' classroom management was 85.3%, categorized as "very good." Participants' feedback regarding the activity implementation, trainers' performance, and overall satisfaction also showed positive results. This PkM is expected to serve as an empirical reference in enhancing teachers' classroom management skills to better facilitate students' mathematical argumentative abilities.
Optimizing Brain Tumor Detection from MRI Images Through Combined VGG16 and ResNet50V2 Models with Batch Normalization Nabilah, Anisah; Wardoyo, Nikko Riestian Putra
Journal of Innovative and Creativity Vol. 5 No. 3 (2025)
Publisher : Fakultas Ilmu Pendidikan Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Brain tumors are one of the most critical and life-threatening health conditions requiring rapid and accurate diagnostic support. Early detection plays a crucial role in determining appropriate medical interventions and improving patient survival rates. With advances in artificial intelligence, particularly computer vision, medical image transmission has emerged as a promising field to address the challenges of manual diagnosis, which is often time-consuming and prone to human error. Magnetic resonance imaging (MRI) is widely used in brain imaging due to its ability to provide detailed structural information, making it an ideal modality for tumor detection and classification. This study employs a Convolutional Neural Network (CNN)-based approach that integrates two deep learning architectures: VGG16 and ResNet50V2, using batch normalization to improve feature extraction and reduce overfitting. Evaluation experiments were conducted on an MRI dataset of 1,311 brain tumor MRI images classified into pituitary, notoma, meningioma, and glioma classes. The aim of this study was to develop a fast, accurate, and efficient method for detecting brain tumors. The results show that the proposed hybrid architecture achieves 98% accuracy, outperforming each pretrained model when applied separately. This study demonstrates that combining multiple CNN architectures with batch normalization can significantly improve the precision and accuracy of brain tumor detection. This approach has the potential to become a valuable diagnostic tool for radiologists, enabling faster and more accurate clinical decision-making. Furthermore, the application of such deep learning models in medical practice could contribute to reducing diagnostic errors and improving patient care in the long term.
Analisis Faktor – Faktor Yang Mempengaruhi Daya Beli Konsumen Terhadap UMKM Zenny Bersaudara Nazaruddin, Erizal; Ramadhani, Pia; Rahmi, Mufida; Bariq, Rafi; Nabilah, Anisah
Innovative: Journal Of Social Science Research Vol. 4 No. 1 (2024): Innovative: Journal Of Social Science Research
Publisher : Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/innovative.v4i1.8130

Abstract

Permasalahan ini berkaitan dnegan analisis faktor-faktor yang mempengaruhi daya beli konsumen terhadap UMKM zenny bersaudara. Dalam penelitian ini menggunakan metode analisis Deskriminan yang dipakai untuk mengetahui apa saja faktor yang mempengaruhi daya beli konsumen. Adapun hasil yang diperoleh dari penelitian ini adalah Adanya perbedaan antara konsumen yang “sering” membeli UMKM zenny bersaudara dengan yang “kurang” membeli. Dan Variabel yang mempengaruhi daya beli produk UMKM Zenny bersaudara adalah variabel harga (X1), cita rasa (X2), pelayanan (X3), tampilan (X4) dan kemudahan (X5). Jadi hipotesis harga mempengaruhi daya beli konsumen terhadap produk UMKM.
Human Bone Age Estimation of Carpal Bone X-Ray Using Residual Network with Batch Normalization Classification Nabilah, Anisah; Sigit, Riyanto; Fariza, Arna; Madyono, Madyono
JOIV : International Journal on Informatics Visualization Vol 7, No 1 (2023)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.1.1024

Abstract

Bone age is an index used by pediatric radiology and endocrinology departments worldwide to define skeletal maturity for medical and non-medical purposes. In general, the clinical method for bone age assessment (BAA) is based on examining the visual ossification of individual bones in the left hand and then comparing it with a standard radiographic atlas of the hand. However, this method is highly dependent on the experience and conditions of the forensic expert. This paper proposes a new approach to age estimation of human bone based on the carpal bones in the hand and using a residual network architecture. The classification layer was modified with batch normalization to optimize the training process. Before carrying out the training process, we performed an image augmentation technique to make the dataset more varied. The following augmentation techniques were used: resizing; random affine transformation; horizontal flipping; adjusting brightness, contrast, saturation, and hue; and image inversion. The output is the classification of bone age in the range of 1 to 19 years. The results obtained when using a VGG16 model were an MAE value of 5.19 and an R2 value of 0.56 while using the newly developed ResNeXt50(32x4d) model produced an MAE value of 4.75 and an R2 value of 0.63. The research results indicate that the proposed modification of the residual training model improved classification compared to using the VGG16 model, as indicated by an MAE value of 4.75 and an R2 value of 0.63.