Claim Missing Document
Check
Articles

Found 3 Documents
Search

Comparing the Prediction of Numeric Patterns on Form C1 Using the K-Nearest Neighbors (K-NN) Method and a Combination of K-Nearest Neighbors (K-NN) with Connected Component Labeling (CCL) Suriani, Uci; Kurniawan, Tri Basuki
Journal of Information System and Informatics Vol 5 No 4 (2023): Journal of Information Systems and Informatics
Publisher : Universitas Bina Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51519/journalisi.v5i4.592

Abstract

Indonesia's elections serve as a cornerstone of its democratic system, with the active participation of its citizens being of paramount importance. To bolster transparency and civic engagement during these elections, the SITUNG system (Election Result Information System) is employed for the tabulation of election results. However, the current tabulation process remains manual, potentially leading to data entry errors and a reduced accuracy of election outcomes. This research endeavor seeks to enhance the efficiency and accuracy of election result tabulation by employing the K-Nearest Neighbors (K-NN) method for recognizing numeric patterns on Form C1, both independently and in combination with Connected Component Labeling (CCL). The K-NN method demonstrates a commendable 60.0% accuracy in recognizing numeric patterns from the original Form C1 data. However, when combined with CCL, the accuracy drops to 51.2%. This research makes a significant contribution by simplifying the tabulation process and improving the accuracy of election results in Indonesia through the application of the K-NN method. The technology is anticipated to fortify democracy by promoting a more transparent and participatory electoral process for the citizens.
Pemodelan Prediktif Keterlambatan Bicara pada Balita Terkait dengan Penggunaan Smartphone Menggunakan Data Mining Suriani, Uci; Ninditama, Ilsa Palingga; Syaputra, Wahyudi
Journal of Information Technology Ampera Vol. 5 No. 1 (2024): Journal of Information Technology Ampera
Publisher : APTIKOM SUMSEL

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51519/journalita.v5i1.590

Abstract

Penelitian ini bertujuan untuk memprediksi tingkat keterlambatan bicara pada balita yang sudah terindekasi smartphone dengan menggunakan metode klasifikasi dan algoritma Decision Tree C4.5. Atribut yang digunakan dalam penelitian ini mencakup umur (usia), durasi, dan jenis aplikasi yang digunakan. Pengelolaan data untuk prediksi tingkat keterlambatan bicara pada balita menggunakan tahapan Knowledge Discovery in Database (KDD) dengan alat bantu tools RapidMiner. Proses penghitungan data dengan algoritma Decicion Tree menunjukkan bahwa tingkat keterlambatan bicara (Speech Delayed) yang terlambat lebih rendah dibandingkan dengan tingkat balita yang tidak mengalami keterlambatan bicara (Normal). Hasil akurasi prediksi sebesar 89.59%. Evaluasi dengan metrik AUC juga menunjukkan nilai 89.59%, mengindikasikan bahwa model ini memiliki kemampuan klasifikasi yang hampir sempurna. Temuan ini memverifikasi bahwa model mampu memprediksi tingkat keterlambatan Bicara pada balita dengan tingkat akurasi yang tinggi.
How Digital Content Quality and Online Promotion Influence Online Purchase Decisions Through Consumer trust Rahayu, Sri; Rahmadhani, Muhammad Apriliansyah; Kurniawan, M. Agus; Nugraha, Winata; Suriani, Uci
International Journal of Multidisciplinary Sciences and Arts Vol. 5 No. 1 (2026): International Journal of Multidisciplinary Sciences and Arts, Article January 2
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/ijmdsa.v5i1.7811

Abstract

The need to better understand the elements influencing consumers' online purchasing decisions has arisen as a result of the intense competition among online merchants brought about by the rapid expansion of digital business. Although earlier research has emphasized the significance of promotional tactics and high-quality digital material, empirical results about their relative efficacy and the function of trust in online buying situations are still contradictory. With customer trust acting as a mediating variable, this study attempts to investigate the impact of digital content quality and online promotion on online purchase decisions. Using survey information gathered from 150 online shoppers who had made purchases via digital platforms, a quantitative study methodology was used. Partial Least Squares–Structural Equation Modeling (PLS-SEM) was used to examine the data in order to evaluate the measurement and structural models. The findings show that while consumer trust has a substantial impact on online purchase decisions, online promotion has a big beneficial impact on both. On the other hand, neither customer trust nor online purchase decisions are significantly impacted by the quality of digital material. These results imply that promotional incentives and trust-building strategies are more important than content quality alone in influencing consumer purchasing behavior in fiercely competitive digital marketplaces. Practically speaking, the findings suggest that in order to improve purchase outcomes, digital companies should prioritize clear and appealing promotional techniques while also building customer trust.