Claim Missing Document
Check
Articles

Found 12 Documents
Search

PENINGKATAN JIWA KEWIRAUSAHAAN SMAN 1 GIANYAR MELALUI TOPIK ENTREPENEUR MINDSET Juliana Eka Putra, I Gede; Widya Utami, Nengah; Purnama, I Nyoman; Muntina Dharma, Eddy; Satvika Iswari, Ni Made
Martabe : Jurnal Pengabdian Kepada Masyarakat Vol 7, No 10 (2024): MARTABE : JURNAL PENGABDIAN MASYARAKAT
Publisher : Universitas Muhammadiyah Tapanuli Selatan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31604/jpm.v7i10.3810-3816

Abstract

SMAN 1 Gianyar merupakan salah satu sekolah unggulan di Kabupaten Gianyar yang aktif mengembangkan kurikulum kewirausahaan bagi para siswanya. Di sekolah ini, para siswa dididik dan dilatih untuk memiliki jiwa kewirausahaan melalui kolaborasi dengan praktisi dan akademisi. Upaya ini bertujuan untuk memperkuat fundamental kewirausahaan di kalangan siswa, sehingga dapat membuka wawasan mereka dalam pengembangan usaha. Melalui pengabdian masyarakat ini dirancang program kewirausahaan khusus untuk merangsang minat dan kemampuan siswa dalam berwirausaha. Program yang disusun meliputi pelatihan Entrepreneur Mindset dan bisnis model canvas, yang bertujuan memperkuat pemahaman siswa dalam pengembangan dan perancangan usaha. Kegiatan ini berhasil memberikan manfaat bagi para siswa di SMAN 1 Gianyar. Para siswa yang menjadi peserta mengetahui bagaimana pola pikir untuk menjadi seorang pengusaha dan mampu menerapkan memetakan rencana usahanya kedalam bisnis model canvas dalam mengembang kegiatan kewirausahaan. Metode tersebut dapat langsung diterapkan kepada para siswa di SMAN 1 Gianyar sehingga proses pelaksanaan belajar mengajar menjadi lebih inovatif dan menarik.
Application of KNN Voting Classification and Naive Bayes for Classification of Type II Diabetes Mellitus Agung, I Gusti Agung Made Suparta Yasa; Muntina Dharma, Eddy; Widya Utami, Nengah
INOVTEK Polbeng - Seri Informatika Vol. 10 No. 3 (2025): November
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/tynbfz55

Abstract

Type II diabetes mellitus (Type II DM) is a public health burden that requires fast and accurate early detection, particularly in primary care settings. Single machine-learning classifiers such as K-Nearest Neighbor (KNN) and Naive Bayes (NB) are widely used but have limitations, including the computational cost of KNN and the strong feature-independence assumption of NB. This study applies an ensemble Voting Classifier (VC) that combines KNN and NB to classify Type II DM using clinical data from 2,390 patients at Mengwi 1 Health Center. Following the CRISP-DM process, we evaluate the models under 80:20 and 70:30 train–test splits using accuracy, precision, recall, F1-score, and ROC/AUC. Compared with the KNN baseline, soft voting consistently improves performance: on the 80:20 split, accuracy increases from 80.33% to 81.59% (+1.26 percentage points) and F1-score from 79.52% to 80.91% (+1.39%); on the 70:30 split, accuracy increases from 80.47% to 82.01% (+1.54%) and F1-score from 79.65% to 81.24% (+1.59%). The soft-voting ensemble also yields higher AUCs, reaching 0.8138 (80:20) and 0.8213 (70:30), and outperforms both single models and hard voting. The novelty of this work lies in demonstrating that a lightweight KNN–NB soft-voting ensemble, designed for the computational constraints of a primary health center and evaluated with repeated cross-validation, can provide small but consistent gains over single classifiers on real DM data. These findings indicate that such an ensemble is a promising building block for clinical decision support in resource-limited primary care, although further calibration, external validation, and prospective testing are still required.