Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Jurnal Informatika

SISTEM PAKAR FORWARD CHAINING , FUZZY-MAX DAN CERTAINTY FACTOR AYAM PEDAGING Asep Afandi; Dwi Marisa Efendi
Jurnal Informatika Vol 21, No 1 (2021): Jurnal Informatika
Publisher : IIB Darmajaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30873/ji.v21i1.2870

Abstract

Chicken farming is one of the promising business potentials, but in management and care, it is very important to determine the success of chicken farming. Often in the care of negligent employees so that they are exposed to disease outbreaks. With various types of diseases that attack the symptoms are very similar and even the same as other diseases, therefore an expert system can be used to diagnose a disease by looking at the characteristics of the disease suffered, and how the solution is to treat or prevent the disease In the study, it discusses 8 types of broiler diseases, where the expert system method used is the Fuzzy Max method, Forward Chaining, and Certainty Factor. From the results of the Fuzzy Max method, the results showed an accuracy of 80% - 90% for all types of diseases, while the Certainty Factor method showed 96% - 99% for all types of diseases.Keywords— Expert System, Fuzzy Max, Certainty Factor,  Forward Chaining.
SISTEM PENGAMBILAN KEPUTUSAN PENERIMA BANTUAN RENOVASI RUMAH DENGAN MENGGUNAKAN METODE WP DAN SAW Dwi Marisa Efendi; Asep Afandi
Jurnal Informatika Vol 21, No 2 (2021): Jurnal Informatika
Publisher : IIB Darmajaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30873/ji.v21i2.2752

Abstract

Rumah merupakan banguan yang memeiliki peran yang sangat krusial sebagai tempat tinggal hunian dan berkumpulnjya suatu keluarga[1][2].pemerintah memiliki program untuk membantu masyarakat, salah satunya adalah program renovasi rumah.data yang didapat di provinsi lampung angka kemiskinan mencapai 13.01 persen pada tahun 2018[4].program ini diadakan untuk menurunkan angka kemiskinan tersebut.dalam penelitian ini enggunakan dua metode yaitu metode SAW dan Wp, kedua metode ini digunakan untuk mengetahui siapa yang paling layak dalam mendapatkan bantuan renovasi rumah.Adapun kriteria yang dibutuhkan ada 11 kriteria, diantaranya adalah Pekerjaan,,Status lahan tempat tinggal, Dinding Rumah,Sumber air minum,Bahan bakar untuk masak,.KOndisi MCK, , Konsumsi pertahun,Pendidikan ,Penghasilan , atapdan lantai.. Dengan adanya penelitian ini penulis telah merancang, Hasil dari penggunan spk menggunakan metode SAW ini menunjukan nilai error mencapai 0.070137683
PERBANDINGAN PENGOLAHAN DATA PREDIKSI PERSEDIAAN GAS LPG 3KG MENGGUNAKAN REGRESI LINIER BERGANDA DAN K-MEANS Annisa Rismanitanti; Rima Mawarni; Sidik Rahmatullah; Dwi Marisa Efendi; Sulis Nurbaiti
Jurnal Informatika Vol 22, No 2 (2022): Jurnal Informatika
Publisher : IIB Darmajaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30873/ji.v22i2.3376

Abstract

he oil and natural gas sector is a sector that is used with great importance for Indonesia's national development. An interesting commodity to watch out for in the oil and gas industry is liquefied petroleum gas (LPG). LPG is a hydrocarbon gas that has been liquefied under pressure to facilitate storage, transportation, and handling and the main ingredients consist of propane/C3, butane/C4 or can be mixed to produce mixed LPG..At this time PT. BLORA MUSTIKA does not focus on when household needs increase and when not, the meaning of this is that LPG gas data is not used properly and is only recorded, this of course makes PT BLORA MUSTIKA unable to predict demand from sub-distributors and results in frequent an empty supply of LPG gas causing difficulties for the community to obtain 3 Kg LPG gas. This problem can be calculated and compared with the Multiple Linear Regression and K-Means methods.By using the Multiple Linear Regression and K-Means method, it is hoped that it will make it easier for PT. BLORA MUSTIKA in determining demand predictions from sub-distributors so that there is no shortage of LPG gas supplies and which method can be obtained which is more effective and efficient.