Claim Missing Document
Check
Articles

Found 5 Documents
Search

The Influence of Genetic Variations in CYP1A2 Associated with Clozapine Metabolism in Schizophrenia Patients Annajla, Fathina; Septi, Annisa Frastica; Meilani, Nanda Diva; Zahro, Aurora Fatimatuz
JURNAL PEMBELAJARAN DAN BIOLOGI NUKLEUS Vol 10, No 3: Jurnal Pembelajaran Dan Biologi Nukleus November 2024
Publisher : Universitas Labuhanbatu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36987/jpbn.v10i3.6182

Abstract

Schizophrenia is a severe mental disorder that affects how a person thinks, feels, and behaves. Antipsychotic drugs are the treatment of choice for patients with schizophrenia. Clozapine is an atypical antipsychotic with unique efficacy in treatment-resistant schizophrenia. However, genetic variations in CYP1A2 can influence the differences in the activity of this enzyme, which in turn can affect the metabolism of clozapine and the response to treatment. This review aims to examine the impact of CYP1A2 genetic variations on clozapine metabolism in patients with schizophrenia. This review is prepared using the narrative literature review method, literature search was conducted through PubMed over the past ten years (2014-2024) using relevant keywords. The findings indicate that CYP1A2 genetic variations *1F is an ultrarapid metabolizer whose activity is strengthened by the presence of cigarettes, while *1C and *1D shows a decrease in CYP1A2 enzyme metabolism. This review underscores the importance of considering genetic factors, particularly CYP1A2, in tailoring treatment plans for schizophrenia patients
Development of a Gelatin-Based Genomic Reference Material for Halal Authentication Using Real-Time PCR Rahma, Anisa Aula; Meilani, Nanda Diva; Sulistiawati; Ainaputri, Aliza Salsabila; Damara, Dandy Satria; Malau, Jekmal
Science and Technology Indonesia Vol. 10 No. 1 (2025): January
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2025.10.1.27-42

Abstract

Indonesia, home to over 270 million people, has the largest Muslim population globally, with approximately 87.18% adhering to Islam, driving significant demand for halal products, particularly in the food and pharmaceutical sectors. Gelatin, commonly used in medicinal capsules, often originates from porcine sources, necessitating precise halal authentication methods. This study presents the development of a novel genomic DNA-based Reference Material (RM) for gelatin, specifically for porcine DNA detection, employing Real-Time Polymerase Chain Reaction (qPCR) techniques. The methodology encompassed in-silico primer design, sample extraction optimization, DNA quality and quantity analysis, linearity assessment, limit of detection (LoD) and quantification (LoQ) determination, and RM characterization. Results indicated that the designed primers could reliably and efficiently detect porcine DNA, with optimal annealing at 58°C and primer concentration at 500 nM, achieving a PCR efficiency of 96.74%. The LoD and LoQ for pork meat samples were determined to be 0.02 pg/uL and 0.004 pg/uL, respectively, while the LoD for porcine gelatin was 0.27 ng/uL. The RMs exhibited robust homogeneity (Sig. 0.052), significant intergroup differences (Sig. 0.000), and low variation (CV 0.96%). Short-term storage at -80°C and -20°C preserved Ct value stability and consistency. Conclusively, this study successfully developed a novel gelatin-based genomic DNA RM for halal authentication, offering a scientifically validated tool that strengthens the halal assurance system, addressing Indonesian consumers’ demand for porcine-free products. These findings hold substantial implications for regulatory authorities, especially in Indonesia, and could inform the development of standardized qPCR RMs for porcine DNA detection in halal compliance testing.
Advancements in Real-Time PCR Technologies: A Comprehensive Review of Probe-Based and Non-Probe-Based Assays for Molecular Diagnostics Malau, Jekmal; Zahro, Aurora Fatimatuz; Zahra, Aliya Azkia; Kasasiah, Ahsanal; Meilani, Nanda Diva; Damara, Dandy Satria; Lestari, Agatha Nabilla; Saryono; Wahyono, Daniel Joko
Science and Technology Indonesia Vol. 10 No. 3 (2025): July
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2025.10.3.660-677

Abstract

The decision between probe-based and non-probe-based qPCR assays is crucial, influenced by diagnostic goals and sample characteristics. This review provides an in-depth evaluation of these two assay types, analyzing their principles, strengths, drawbacks, and applications. A thorough review of the literature, primarily sourced from PubMed, was undertaken to explore prominent assay systems, including TaqMan, KASP, rhAmp, HRM, and SYBR Green. Probe-based qPCR assays, exemplified by TaqMan and rhAmp, are distinguished by their high specificity, aptitude for multiplex analysis, and reduced risk of false positives, making them highly suitable for SNP genotyping and pathogen detection. However, their elevated costs and intricate design requirements remain significant challenges. Conversely, non-probe-based assays, such as SYBR Green and HRM, present cost-effective alternatives with straightforward designs. HRM, in particular, is effective in identifying genetic variations like SNPs with remarkable sensitivity. Nonetheless, these methods are susceptible to non-specific amplifications, requiring careful optimization to maintain reliability. The selection of a suitable qPCR assay depends on various factors, including precision, affordability, and multiplexing capabilities, with applications spanning infectious disease detection and genetic disorder analysis. This review emphasizes the indispensable role of qPCR in molecular diagnostics while showcasing recent technological advances that aim to mitigate existing constraints and enhance diagnostic precision and accessibility.
DEVELOPMENT OF PLASMID-BASED FOR EXTERNAL CONTROL MATERIALS OF CYP2D6*10 (rs1065852) GENE PCR-BASED DETECTION Malau, Jekmal; Zahra, Aliya Azkia; Kasasiah, Ahsanal; Rahmasari, Ratika; Raekiansyah, Muhareva; Rohmah, Siti; Meilani, Nanda Diva; Septi, Annisa Frastica; Zahro, Aurora Fatimatuz; Annajla, Fathina; Hermosaningtyas, Anastasia Aliesa; Hilmi, Indah Laily
Jurnal Bioteknologi & Biosains Indonesia (JBBI) Vol. 10 No. 2 (2023)
Publisher : BRIN - Badan Riset dan Inovasi Nasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/jbbi.2023.2557

Abstract

Reliable clinical diagnosis of Single Nucleotide Polymorphisms (SNPs) is necessary for personalizing tamoxifen medication according to CYP2D6*10 genetic variations. Our research aimed to create a recombinant plasmid for external control material with a molecular size of 3812 bp. The recombinant plasmid was achieved by cloning an 838 bp gene insert of CYP2D6*10 rs1065852 into a 2974 bp pJET1.2 plasmid into Escherichia coli DH10B and selection on ampicillin agar medium. Isolated E. coli recombinants provided the plasmid molecules for analysis. Bi-directional sequencing and Real-Time PCR confirmed the presence of wild-type and mutant rs1065852 DNA fragments in the plasmid, namely homozygote CC and TT. The conclusion is that we have successfully introduced a novel recombinant plasmid developed by cloning the SNP rs1065852, which carries the 100C>T mutation, using pJET 1.2/blunt system, which could significantly enhance the accuracy of clinical SNP diagnostics for personalized medicine in breast cancer treatment.
DEVELOPMENT OF PLASMID-BASED FOR EXTERNAL CONTROL MATERIALS OF CYP2D6*10 (rs1065852) GENE PCR-BASED DETECTION Malau, Jekmal; Zahra, Aliya Azkia; Kasasiah, Ahsanal; Rahmasari, Ratika; Raekiansyah, Muhareva; Rohmah, Siti; Meilani, Nanda Diva; Septi, Annisa Frastica; Zahro, Aurora Fatimatuz; Annajla, Fathina; Hermosaningtyas, Anastasia Aliesa; Hilmi, Indah Laily
Jurnal Bioteknologi & Biosains Indonesia (JBBI) Vol. 10 No. 2 (2023)
Publisher : BRIN - Badan Riset dan Inovasi Nasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/jbbi.2023.2557

Abstract

Reliable clinical diagnosis of Single Nucleotide Polymorphisms (SNPs) is necessary for personalizing tamoxifen medication according to CYP2D6*10 genetic variations. Our research aimed to create a recombinant plasmid for external control material with a molecular size of 3812 bp. The recombinant plasmid was achieved by cloning an 838 bp gene insert of CYP2D6*10 rs1065852 into a 2974 bp pJET1.2 plasmid into Escherichia coli DH10B and selection on ampicillin agar medium. Isolated E. coli recombinants provided the plasmid molecules for analysis. Bi-directional sequencing and Real-Time PCR confirmed the presence of wild-type and mutant rs1065852 DNA fragments in the plasmid, namely homozygote CC and TT. The conclusion is that we have successfully introduced a novel recombinant plasmid developed by cloning the SNP rs1065852, which carries the 100C>T mutation, using pJET 1.2/blunt system, which could significantly enhance the accuracy of clinical SNP diagnostics for personalized medicine in breast cancer treatment.