Claim Missing Document
Check
Articles

THE INFLUENCE OF MAJOR EXPERTISE COURSES ON ALUMNI EMPLOYMENT USING THE APRIORI METHOD Irsyad (Scopus ID: 57204261647), Muhammad; Iskandar, Iwan; Gusti, Siska Kurnia
Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi Vol 10, No 2 (2024): December 2024
Publisher : Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/coreit.v10i2.34144

Abstract

The role of alumni in university progress and quality is vital. This study used data from the tracer study application to analyze the relationship between skill courses and alumni employment. The data mining technique of association was employed to find linkages between different parameters. The Apriori algorithm was used to identify patterns that described the relationship between skill courses and alumni employment. The findings revealed that the most sought-after professions by alumni of the Informatics Engineering Study Program were educators, such as teachers and lecturers, with a support value of 18.7692%. Programmers were also in high demand, with a support value of 15.3846%. The subjects that were found to have the greatest influence on employment were Database, Computer Network, Computer Human Interaction, and Software Engineering. These findings provide valuable insights for the Informatics Engineering Study Program to prioritize and enhance these influential courses in terms of curriculum, teaching methods, and teaching materials, with the aim of improving the relevancy and quality of the courses in supporting alumni employment.
Implementation of Feature Selection Information Gain in Support Vector Machine Method for Stroke Disease Classification Fitri, Anisa; Afrianty, Iis; Budianita, Elvia; Kurnia Gusti, Siska
Bulletin of Informatics and Data Science Vol 4, No 1 (2025): May 2025
Publisher : PDSI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61944/bids.v4i1.116

Abstract

Stroke is a disease with a high mortality and disability rate that requires early detection. However, the main challenge in the classification process of this disease is data imbalance and the large number of irrelevant features in the dataset. This study proposes a combination of Support Vector Machine (SVM) method with Information Gain feature selection technique and data balancing using Synthetic Minority Over-sampling Technique (SMOTE) to improve classification accuracy. The dataset used consists of 5,110 data with 10 variables and 1 label. Feature selection was performed with three threshold values (0.04; 0.01; and 0.0005), while SVM classification was tested on three different kernels: Linear, RBF, and Polynomial. Model evaluation was performed using Confusion Matrix and training and test data sharing using k-fold cross validation with k=10. The best results were obtained on the RBF kernel with Cost=100 and Gamma=5 parameters at an Information Gain threshold of 0.0005, with accuracy reaching 90.51%. These results show that the combination of techniques used aims to determine the variables that most affect SVM classification in detecting stroke disease
Implementation of XGBoost Ensemble and Support Vector Machine For Gender Classification of Skull Bones Ramadhani, Astrid; Afrianty, Iis; Budianita, Elvia; Gusti, Siska Kurnia
Bulletin of Informatics and Data Science Vol 4, No 1 (2025): May 2025
Publisher : PDSI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61944/bids.v4i1.115

Abstract

Sex identification based on skull bones is an important step in forensic anthropology, especially in cases where unidentified human skeletons are found. Conventional methods such as DNA analysis are often used, but have limitations, especially when the bones are damaged, charred or decayed, making the analysis process difficult. This research applies XGBoost ensemble and Support Vector Machine for sex classification on skull bones. The purpose of this research is to handle complex data with many features and unbalanced data using the XGBoost ensemble method and Support Vector Machine (SVM). The data used consisted of 2,524 samples with 82 measurement features. Model performance was evaluated using accuracy, precision, recall, and F1 score metrics. The results showed that the combination of XGBoost and SVM methods, especially with the RBF kernel, was able to achieve accuracy of up to 91.52%. This finding proves that machine learning-based approaches can be an effective and reliable solution in supporting the forensic identification process
Diabetes Classification using Gain Ratio Feature Selection in Support Vector Machine Method Al Rasyid, Nabila; Afrianty, Iis; Budianita, Elvia; Kurnia Gusti, Siska
Bulletin of Informatics and Data Science Vol 4, No 1 (2025): May 2025
Publisher : PDSI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61944/bids.v4i1.114

Abstract

Diabetes is a major cause of many chronic diseases such as visual impairment, stroke and kidney failure. Early detection especially in groups that have a high risk of developing diabetes needs to be done to prevent problems that have a wide impact. Indonesia is ranked seventh in the world with a prevalence of 10.7% of the total number of people with diabetes. This research aims to determine the attributes in the diabetes dataset that most affect the classification and apply the Support Vector Machine method for diabetes classification. For the determination process, Gain Ratio feature selection technique is applied. The dataset used consists of 768 data with 8 attributes. In this classification process, 3 SVM kernels (Linear, Polynomial, and RBF) are used with three possible data divisions using the ratio (70:30; 80:20; 90:10). Before applying feature selection, there were 8 attributes used and achieved the highest accuracy of 94.81% at a ratio of 80:20 using the RBF kernel with a combination of two parameters namely C = 100, Gamma = 3 and C = 100, Gamma = Scale.  Feature selection parameters in the form of thresholds used include 0.02; 0.03; and 0.05. After applying feature selection, the attribute that produces the highest accuracy uses 6 attributes. The highest accuracy after applying feature selection reached 95.45% at a threshold of 0.02 with a ratio of 80:20 using the RBF kernel with parameters C = 100 and Gamma = Scale. The results showed that there was an increase in accuracy after applying feature selection
PENGARUH TEKNIK PENYEIMBANGAN DATA PADA KLASIFIKASI PENYAKIT NAFLD DENGAN ALGORITMA SVM Faska, Ridho Mahardika; Gusti, Siska Kurnia; Budianita, Elvia; Syafria, Fadhilah
Jurnal Informatika Teknologi dan Sains (Jinteks) Vol 7 No 2 (2025): EDISI 24
Publisher : Program Studi Informatika Universitas Teknologi Sumbawa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51401/jinteks.v7i2.5849

Abstract

Non-Alcoholic Fatty Liver Disease (NAFLD) merupakan penyakit hati kronis yang prevalensinya terus meningkat secara global, termasuk di Indonesia, dengan faktor risiko utama seperti obesitas, diabetes melitus, dan dislipidemia. Deteksi dini NAFLD menjadi tantangan penting karena metode konvensional seperti biopsi hati dan pencitraan memiliki keterbatasan dalam hal biaya, risiko invasif, dan kepraktisan. Penelitian ini bertujuan untuk mengembangkan model klasifikasi NAFLD menggunakan algoritma Support Vector Machine (SVM) dengan memanfaatkan dataset dari Kaggle yang terdiri dari 10 variabel dan 17.549 data. Untuk mengatasi masalah ketidakseimbangan kelas, diterapkan teknik oversampling seperti SMOTE, ADASYN, dan Random Oversampling (ROS) untuk melihat performa akurasi. Hasil penelitian menunjukkan bahwa SMOTE memberikan performa terbaik dengan akurasi tertinggi mencapai 78,70% pada kernel RBF, ROS dengan akurasi 78,18% dan ADASYN dengan akurasi 76,86%. Penelitian ini menyimpulkan bahwa pemilihan teknik oversampling data dan parameter yang tepat sangat penting dalam meningkatkan efektivitas model untuk menangani data tidak seimbang, sehingga dapat berkontribusi pada pengembangan metode deteksi NAFLD yang lebih efisien dan non-invasif.
Penerapan Metode ADASYN Dalam Mengatasi Imbalanced Data Untuk Klasifikasi Penyakit Stroke Menggunakan Support Vector Machine Alwaliyanto; Siska Kurnia Gusti; Iis Afrianty; Fadhilah Syafria
Bulletin of Computer Science Research Vol. 5 No. 4 (2025): June 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v5i4.612

Abstract

Stroke is one of the leading causes of death and disability worldwide, making it essential to develop classification models that can assist in early and accurate diagnosis. This study aims to implement the Support Vector Machine (SVM) algorithm with three types of kernels linear, polynomial, and Radial Basis Function (RBF) to classify stroke disease data. The Adaptive Synthetic Sampling (ADASYN) method is employed to address the class imbalance problem, while model training and evaluation are carried out using 5-Fold Cross-Validation to ensure stable and reliable results. The findings indicate that ADASYN successfully improves the model’s sensitivity to stroke cases (the minority class), as reflected by an increase in recall and F1-score, despite a slight decrease in overall accuracy a common trade-off in handling imbalanced data. The linear kernel (after ADASYN) achieved the best performance after imbalance handling, with an average AUC-ROC of 0.8333, recall of 0.7827, and F1-score of 0.2181 for the stroke class. Although the F1-score remains relatively low, it improved compared to the pre-ADASYN results, indicating better detection of stroke cases. The implementation was conducted using Google Colab, which also contributed to efficient data processing and visualization. Overall, the results demonstrate that the combination of SVM and ADASYN is effective in enhancing the model’s sensitivity to minority classes and is well-suited for medical data classification tasks, particularly in the early diagnosis of stroke using machine learning approaches.
Penerapan Information Gain Untuk Seleksi Fitur Pada Klasifikasi Jenis Kelamin Tulang Tengkorak Menggunakan Backpropagation Khair, Nada Tsawaabul; Afrianty, Iis; Syafria, Fadhilah; Budianita, Elvia; Gusti, Siska Kurnia
Bulletin of Computer Science Research Vol. 5 No. 4 (2025): June 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v5i4.637

Abstract

Forensic anthropology and skull analysis play a crucial role in the biological identification of individuals, including sex determination. This study aims to improve the accuracy of gender classification based on skull structure by combining the Information Gain feature selection method with the Backpropagation algorithm. The dataset used is the craniometric data compiled by William W. Howells, consisting of 2,524 samples with 85 measurement features. The preprocessing stage includes data selection, data cleaning, and normalization. Feature selection was conducted using the Information Gain method with three threshold values: 0.01, 0.05, and 0.1, resulting in 79, 46, and 38 selected features, respectively. The model was evaluated using the K-Fold Cross Validation method with K=10 and K=20. The highest accuracy of 93.91% was achieved at the 0.01 threshold using the Backpropagation architecture [79:119:1], a learning rate of 0.01, and K=20. These results demonstrate that feature selection using Information Gain enhances the performance of the Backpropagation model by eliminating irrelevant features and minimizing the risk of overfitting.
Implementasi Model Long Short Term Memory (LSTM) dalam Prediksi Harga Saham Kurniansyah, Juliandi; Siska Kurnia Gusti; Febi Yanto; Muhammad Affandes
Bulletin of Information Technology (BIT) Vol 6 No 2: Juni 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bit.v6i2.2005

Abstract

Stock market investment is gaining popularity, although predicting stock price fluctuations remains challenging. Accurate stock prediction models can assist investors in decision-making. In this research, a Long Short-Term Memory (LSTM) model was employed to make predictions regarding the stock prices of BBCA based on daily historical data from January 1 2015 to January 1 2025. The data was gathered from the Yahoo Finance website, utilizing only the closing price ('close') variable. The research process included data pre-processing, Min-Max normalization, LSTM modeling with varying timesteps (30, 60, 90 days), and evaluation of prediction results. The LSTM model was built with two LSTM layers, a dropout layer, and a final dense layer, and its training involved the application of the mean_squared_error loss function and Adam optimizer. Evaluation results showed that the model configuration with 60 timesteps achieved optimal performance with a RMSE of 114.17, MAPE percentage of 0.96%, and an R-Squared of 0.98, indicating highly accurate and reliable predictions. This study demonstrated that LSTM is an effective model for stock price prediction based on time series data.
Clustering Keluarga Miskin Desa Bina Baru dengan Metode K-Medoids Amelia, Felina; Iskandar, Iwan; Gusti, Siska Kurnia; Haerani, Elin; Yusra, Yusra
Krea-TIF: Jurnal Teknik Informatika Vol 11 No 1 (2023)
Publisher : Fakultas Teknik dan Sains, Universitas Ibn Khaldun Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32832/krea-tif.v11i1.14104

Abstract

Kemiskinan di Indonesia terjadi di berbagai daerah, mulai pedesaan hingga perkotaan memiliki permasalahan kemiskinan masing – masing. Masalah kemiskinan juga dialami oleh Desa Bina Baru. Desa Bina Baru yang memiliki jumlah penduduk sebanyak 5.760 jiwa dengan total 1.742 keluarga, yang tersebar dalam 30 Rukun Tetangga (RT) dan 8 Rukun Warga (RW). Upaya dalam penurunan angka kemiskinan dapat dilakukan dengan berbagai cara, mulai pembangunan yang merata, penyaluran bantuan yang tepat sasaran, pemberian kebijakan yang tepat, dan lain sebagainya. Pengelompokan kemiskinan menjadikan salah satu upaya untuk menurunkan angka kemiskinan agar dapat memberikan informasi kepada pemerintahan daerah dalam memberikan kebijakan yang lebih tepat guna. Clustering merupakan teknik data mining yang bertujuan untuk mengelompokkan objek-objek data menjadi beberapa Cluster. Pada penelitian ini pengelompokkan dilakukan dengan teknik pengolahan data mining dengan algoritme K-Medoids dari data Desa Bina Baru tahun 2020 berjumlah 1.005. Hasil perbandingan perhitungan untuk Cluster 1 (kaya) sebanyak 527 penduduk, Cluster 2 (menengah) sebanyak 248 penduduk, dan Cluster 3 (miskin) sebanyak 225 penduduk, Hasil evaluasi dari algoritme k-Medoids adalah 0,991 yang menunjukan cluster yang dibentuk memberikan pengelompokan informasi yang baik. Hasil pengelompokan ini dapat dijadikan acuan untuk informasi kelompok keluarga miskin yang diperlukan pemerintah agar bantuan yang diberikan tepat sasaran.
Pengelompokkan Tingkat Stres Akademik Pada Mahasiswa Menggunakan Algoritma Fuzzy C-Means Alfaiza, Raihan Zia; Budianita, Elvia; Gusti, Siska Kurnia; Afrianty, Iis
TIN: Terapan Informatika Nusantara Vol 6 No 5 (2025): October 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/tin.v6i5.8460

Abstract

Academic stress is a common problem experienced by students due to the burden of assignments, exams, and social pressures. If not managed properly, it can impact achievement and psychological well-being. This study aims to classify the academic stress levels of students at the Faculty of Science and Technology, Sultan Syarif Kasim State Islamic University, Riau, using the Fuzzy C-Means (FCM) algorithm, which allows flexibility in the degree of data membership in more than one cluster. Data were obtained from a modified Perception of Academic Stress Scale (PASS) questionnaire, with 587 respondents from the 2021–2024 intake. The research stages included data selection, cleaning, and transformation, application of the FCM algorithm, and evaluation using three validation metrics: the Partition Coefficient Index (PCI), the Fuzzy Silhouette Index (FSI) and the Silhouette Coefficient. The test results showed the optimal number of clusters at C = 2, with the highest PCI value of 0.5663, FSI and ilhouette Coefficient score of 0.3056, resulting in two groups of students: 313 with high stress levels and 274 with low stress levels. The decrease in PCI, FSI and Silhouette scores across a larger number of clusters indicates that dividing two clusters provides the clearest grouping structure. These findings demonstrate that the FCM algorithm is effective in mapping students' academic stress patterns and can be used as a basis for designing more targeted academic mentoring strategies, counseling services, and psychological intervention programs services.
Co-Authors Abdul Wahid Abdullah Abdullah Abdullah, Said Noor Abdussalam Al Masykur Adi Mustofa Al Rasyid, Nabila Alfaiza, Raihan Zia Alfin Hernandes Alwaliyanto Alwis Nazir Alwis Nazir Alwis Nazir Amelia, Felina Anggi Vasella Azhima, Mohd Baehaqi Beni Basuki Cut Lira Kabaatun Nisa Destri Putri Yani Devi Julisca Sari Dina Septiawati efni humairah Eka Pandu Cynthia Eka Pandu Cynthia Elin Haerani Elin Haerani Elin Haerani Elin Haerani Elvia Budianita Erni Rouza, Erni Fadhilah Syafria Faska, Ridho Mahardika Febi Yanto Fitri Insani Fitri Insani Fitri Wulandari Fitri, Anisa Gusti, Gogor Putra Hafi Puja Hamwar, Syahbudin Iis Afrianty Iis Afrianty Iqbal Salim Thalib Irsyad (Scopus ID: 57204261647), Muhammad Iwan Iskandar Jasril Jasril Jasril Jasril Khair, Nada Tsawaabul Kurniansyah, Juliandi Lestari Handayani M Wandi Dwi Wirawan Maemonah, Maemonah Morina Lisa Pura Muhammad Affandes Muhammad Fauzan Muhammad Irsyad Muhammad Khairy Dzaky Muhammad Rifaldo Al Magribi Nazir, Alwis Norhiza, Fitra Lestari Novriyanto Novriyanto Nurul Ikhsan Okfalisa Okfalisa Pizaini Pizaini Prima Yohana Rahmah Miya Juwita Raja Indra Ramoza Ramadhani, Astrid Risfi Ayu Sandika Robbi Nanda Robby Azhar Sardi, Hajra Satria Bumartaduri Sayyid Muhammad Habib Siti Ramadhani Siti Ramadhani Siti Ramadhani Surya Agustian Suwanto Sanjaya Syafira, Fadhilah Syafria, Fadhillah Syaputra, Muhammad Dwiky Umam, Isnaini Hadiyul Vusuvangat, Imam Wulandari, Fitri Yayuk Wulandari Yelfi Yelfi Yola, Melfa Yusra Yusra, - Yusra, Yusra