Claim Missing Document
Check
Articles

Found 2 Documents
Search

INDEKS WIENERDARI BEBERAPA STRUKTUR ALJABAR Ardana, Alfian Putra; Satriyantara, Rio; Widiastuti, Ratna Sari
Parameter: Jurnal Matematika, Statistika dan Terapannya Vol 3 No 2 (2024): Parameter: Jurnal Matematika, Statistika dan Terapannya
Publisher : Jurusan Matematika FMIPA Universitas Pattimura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/parameterv3i02pp169-180

Abstract

Indeks Wiener adalah salah satu indeks topologi yang memainkan peran penting dalam kimia matematika. Artikel ini bertujuan untuk untuk merangkum, menyederhanakan dan menganalisis metode serta temuan terbaru terkait Indeks Wiener dalam konteks graf aljabar. Metode yang digunakan adalah dengan meninjau literatur secara sistematis terhadap jurnal-jurnal yang relevan, seluruh sumber yang didapatkan dari artikel ini adalah artikel yang diterbitkan dalam sepuluh tahun terakhir, memastikan relevansi dan kebaruan informasi. Kriteria inklusi mencakup artikel yang fokus pada teori dan aplikasi Indeks Wiener dalam konteks graf aljabar serta menyediakan rumus umum atau temuan signifikan, sedangkan kriteria eksklusi menghilangkan artikel tanpa peer-review, tanpa bukti matematis yang mendalam, atau yang fokus pada aplikasi non-aljabar. Artikel ini memuat informasi tentang Indeks Wiener dari graf pangkat dari grup dihedral 2n (Gamma^{D_2n}) , Indeks Wiener dari graf ideal prima dari ring bilangan bulat modulo (Gamma_p(Z_n)) dan Indeks Wiener dari graf identitas dari grup siklis (Gamma_G), dimana G dilambangkan sebagai grup siklis dan berorde n untuk n elemen N.
BOILING POINT MODELING OF EUGENOL COMPOUNDS AND ITS DERIVATIVES USING THE SOMBOR INDEX AND REDUCED SOMBOR INDEX APPROACHES Ardana, Alfian Putra; Putri, Syaftirridho; Lestari, Dia; Wardhana, I Gede Adhitya Wisnu; Dharmayani, Ni Komang Tri
Journal of Fundamental Mathematics and Applications (JFMA) Vol 8, No 2 (2025)
Publisher : Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jfma.v8i2.25725

Abstract

Eugenol and its derivatives, phenylpropanoid compounds derived from plants like Syzygium aromaticum, exhibit significant biological activities, including antimicrobial, antifungal, anti-inflammatory, antioxidant, analgesic, and anticancer properties. These attributes make them valuable in drug development and medical applications. In mathematical chemistry, chemical topology graphs are used to determine the topological indices of molecules, which to help predict physical and chemical properties. Here, atoms are represented as nodes and bonds as edges. This study explores the relationship between the Sombor index, the reduced Sombor index, and the boiling points of eugenol and its derivatives. The methodology includes literature review and computational analysis of the indices, followed by correlation analysis with the boiling points. The findings reveal that the Sombor index negatively correlates with the boiling point, explains 84.8% of the boiling point variance. This implies that an increase in the Sombor index results in a lower boiling point. Conversely, the reduced Sombor index demonstrates a positive correlation, influencing 36.1% of the boiling point variations, indicating that higher reduced Sombor indices correspond to higher boiling points. When combined, the Sombor and reduced Sombor indices explain 86.4% of the boiling point variance, highlighting their significance as predictive parameters. These results provide insights into the thermal properties of eugenol-based compounds and their potential applications in material and pharmaceutical sciences. By leveraging these indices, researchers can better predict and tailor the physical properties of eugenol derivatives for specific purposes.