Dian Atmasani
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Information Technology Education Journal

Evaluasi Kemampuan Profesional Mahasiswa Calon Guru Informatika Melalui Praktik Pengalaman Lapangan Maya Sari Wahyuni; Muh. Isbar Pratama; Nurul Mukhlisah Abdal; Dian Atmasani
Information Technology Education Journal Vol. 3, No. 3, September (2024)
Publisher : Jurusan Teknik Informatika dan Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penelitian ini bertujuan untuk mengevaluasi kemampuan profesional mahasiswa calon guru informatika melalui Praktik Pengalaman Lapangan (PPL). Masalah yang ingin diselesaikan adalah bagaimana hasil kemampuan profesional mahasiswa setelah mengikuti PPL, dengan fokus pada empat aspek utama: perencanaan pembelajaran, pelaksanaan pembelajaran, evaluasi pembelajaran, dan sikap profesionalisme. Penelitian ini menggunakan pendekatan kuantitatif deskriptif dengan metode survei. Data dikumpulkan melalui kuesioner yang disebarkan kepada 50 mahasiswa dari total populasi 200 mahasiswa PPG Prajabatan Program Studi Informatika di Universitas Negeri Makassar. Hasil penelitian menunjukkan bahwa kemampuan mahasiswa dalam perencanaan pembelajaran, pelaksanaan pembelajaran, dan evaluasi pembelajaran berada dalam kategori baik, dengan skor rata-rata masing-masing 4.28, 4.12, dan 4.14. Aspek sikap profesionalisme mencatatkan skor tertinggi dengan rata-rata 4.54, menunjukkan komitmen tinggi mahasiswa dalam menjaga etika profesional. Berdasarkan hasil tersebut, dapat disimpulkan bahwa secara keseluruhan, mahasiswa telah menunjukkan kompetensi yang baik dalam aspek-aspek tersebut, namun perlu penguatan dalam pemanfaatan teknologi dalam pembelajaran dan evaluasi berbasis kompetensi. Penelitian ini diharapkan dapat memberikan kontribusi terhadap pengembangan kurikulum dan peningkatan kualitas pendidikan calon guru informatika di Indonesia.
Artificial Intelligence in Higher Education: A Systematic Review of Its Impact on Student Learning Nurfauziah; Dian Atmasani; A. Muzawwirah Patawari; Nur Athiyyah Fadhilah; Husna Saleh
Information Technology Education Journal Vol. 4, No. 2, May (2025)
Publisher : Jurusan Teknik Informatika dan Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59562/intec.v4i2.8311

Abstract

The development of digital technology has made artificial intelligence an integral part of higher education. While its use by university students provides many benefits in supporting academic activities, there are also concerns about its negative impact, especially in relation to academic integrity, dependability, and critical thinking skills. This research aims to identify the positive and negative impacts of the use of artificial intelligence by university students as well as the challenges faced in the context of higher education. The method used was Systematic Literature Review with the PRISMA approach. The total population of articles obtained was 200 articles. Scientific articles were sourced from the Scopus database published between 2022 and 2025. Articles were screened based on inclusion and exclusion criteria and assessed using the CASP (Critical Appraisal Skills Programme) approach, resulting in 19 articles that could be analysed. The results showed that artificial intelligence can improve learning efficiency, strengthen concept understanding, and support student creativity and problem solving. However, there are serious risks such as plagiarism, dissemination of inaccurate information, and decreased motivation to learn independently. Lack of regulation and digital literacy are factors that exacerbate these negative impacts. Therefore, it is important for higher education institutions to urgently create policies for the ethical use of artificial intelligence and provide comprehensive digital literacy training to students. This research provides a scientific basis for policy makers to optimise the benefits of artificial intelligence while mitigating the risks of its use in academia.