Claim Missing Document
Check
Articles

Found 3 Documents
Search

PELATIHAN LITERASI DIGITAL BAGI GURU SD N 1 TOYAREKA GUNA MENDUKUNG PEMBELAJARAN KURIKULUM MERDEKA Mustofa, Dinar; Darmayanti, Irma; Pramono, Agus; Saputra, Dhanar Intan Surya; Kusuma, Velizha Sandy; Apitiadi, Satyo Dwi
Jurnal AbdiMas Nusa Mandiri Vol. 7 No. 1 (2025): Periode April 2025
Publisher : LPPM Universitas Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/abdimas.v7i1.5949

Abstract

This community service project aims to enhance the digital literacy of teachers at SD Negeri 1 Toyareka in supporting the implementation of the Merdeka Curriculum. One of the challenges teachers face is their limited ability to utilize digital technology and artificial intelligence (AI) to create interactive and relevant learning experiences for students. The program was conducted through socialization, digital literacy training, AI technology introduction, and continuous mentoring and evaluation. During the training, teachers were provided with insights into digital platforms that can be used in the teaching and learning process, as well as AI applications to assist in student data analysis and the creation of adaptive learning materials. The training results show a significant improvement in teachers' skills in using digital technology and AI, particularly in creating more personalized and compelling learning experiences. Teachers could utilize digital tools to manage their classrooms more efficiently and use AI to personalize learning based on students' needs. The program evaluation revealed that teachers felt more confident using technology to support teaching and learning. The sustainability of this program is ensured through regular mentoring and assessment, as well as plans for further training to keep teachers updated with rapidly evolving technologies. This initiative is expected to be a model for developing digital literacy in other schools.
Pelatihan Nearpod bagi Guru untuk Meningkatkan Interaktivitas Pembelajaran di SD Negeri 1 Toyareka Mustofa, Dinar; Darmayanti, Irma; Pramono, Agus; Apitiadi, Satyo Dwi; Kusuma, Velizha Sandy; Saputra, Dhanar Intan Surya
Jurnal Pengabdian Masyarakat: Pemberdayaan, Inovasi dan Perubahan Vol 4, No 6 (2024): JPM: Pemberdayaan, Inovasi dan Perubahan
Publisher : Penerbit Widina, Widina Media Utama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59818/jpm.v4i6.1057

Abstract

The lack of skills among teachers at SD Negeri 1 Toyareka in utilizing interactive learning technology has become a challenge affecting the effectiveness of classroom teaching. This issue prompted a community service initiative in the form of training on the use of the Nearpod platform to enhance teacher’s digital competencies. The objective of this activity was to provide teachers with practical knowledge and skills in using Nearpod to create more interactive learning experiences. The training was conducted in several stages, starting with a needs analysis to assess infrastructure readiness and identify technical challenges, followed by a two-day training session covering an introduction to Nearpod features, hands-on material development exercises, and classroom simulation applications. Evaluation was conducted to measure participants’ improvement in understanding and skills. The training results indicated that most teachers successfully mastered the basic features of Nearpod, such as creating and delivering interactive learning materials. Additionally, teachers reported increased confidence in integrating this technology into their teaching practices. Technical issues, such as unstable internet connections, were the main challenges encountered during the training. Overall, this training had a positive impact on improving teacher’s competencies in integrating learning technology, which has the potential to enrich students learning experiences and enhance classroom interactivity.ABSTRAKKurangnya keterampilan guru SD Negeri 1 Toyareka dalam memanfaatkan teknologi pembelajaran interaktif menjadi tantangan yang memengaruhi efektivitas pembelajaran di kelas. Hal ini mendorong dilakukannya kegiatan pengabdian masyarakat berupa pelatihan penggunaan platform Nearpod untuk meningkatkan kompetensi digital guru. Tujuan kegiatan ini adalah memberikan pemahaman dan keterampilan praktis bagi guru dalam menggunakan Nearpod guna menciptakan pembelajaran yang lebih interaktif. Pelatihan dilaksanakan melalui beberapa tahapan, yaitu analisis kebutuhan untuk menilai kesiapan infrastruktur dan identifikasi kendala teknis, diikuti oleh pelatihan selama dua hari yang mencakup pengenalan fitur Nearpod, latihan pembuatan materi ajar, serta simulasi penerapan di kelas. Evaluasi dilakukan untuk mengukur peningkatan pemahaman dan keterampilan peserta. Hasil pelatihan menunjukkan bahwa sebagian besar guru berhasil menguasai fitur dasar Nearpod, seperti membuat dan menyajikan materi pembelajaran interaktif. Selain itu, para guru merasa lebih percaya diri dalam menggunakan teknologi ini di kelas. Kendala teknis, seperti koneksi internet yang tidak stabil, menjadi tantangan utama yang dihadapi selama pelaksanaan. Secara keseluruhan, pelatihan ini memberikan dampak positif terhadap peningkatan kompetensi guru dalam mengintegrasikan teknologi pembelajaran, yang berpotensi memperkaya pengalaman belajar siswa dan meningkatkan interaktivitas di kelas.
Optimasi Klasifikasi Gaya Belajar Mahasiswa Inklusif Berdasarkan Model VAK dengan Stratified Split dan Multilayer Perceptron Kusuma, Velizha Sandy; Setyo Utomo, Fandy; Baihaqi, Wiga Maulana; Subarkah, Pungkas
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 12 No 5: Oktober 2025
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2025125

Abstract

Identifikasi gaya belajar mahasiswa dengan mempertimbangkan fitur disabilitas memiliki peran penting dalam menciptakan pengalaman belajar yang inklusif dan personal. Namun, ketidakseimbangan data dalam kategori gaya belajar dan disabilitas menimbulkan tantangan yang signifikan bagi model klasifikasi. Penelitian ini bertujuan mengatasi tantangan tersebut dengan menerapkan teknik stratified split untuk menjaga keseimbangan distribusi kelas, khususnya pada variabel disabilitas dan gaya belajar. Algoritma Random Forest dan Multilayer Perceptron (MLP) digunakan untuk mengklasifikasikan gaya belajar mahasiswa berdasarkan model Visual, Auditory, dan Kinesthetic (VAK). Data yang digunakan berasal dari Open University Learning Analytics Dataset (OULAD), yang diproses melalui penggabungan data, pengkodean label, dan transformasi fitur untuk meningkatkan kinerja model. Evaluasi model dilakukan menggunakan metrik akurasi, presisi, recall, dan F1-score. Hasil penelitian menunjukkan bahwa model MLP mencapai kinerja sempurna dengan skor 100% pada semua metrik, sementara Random Forest menunjukkan performa sangat baik dengan skor 99%. Implementasi stratified split terbukti efektif dalam menjaga keseimbangan distribusi data, memastikan representasi yang memadai untuk semua kelas, termasuk mahasiswa dengan disabilitas. Penelitian ini memberikan kontribusi penting dalam mengembangkan model klasifikasi gaya belajar yang lebih akurat dan mendukung pendekatan pembelajaran yang lebih inklusif.   Abstract Identifying students' learning styles by considering disability features plays an important role in creating an inclusive and personalized learning experience. However, the imbalance of data in learning style and disability categories poses significant challenges for classification models. This research aims to overcome these challenges by applying a stratified split technique to maintain a balanced class distribution, especially in the disability and learning style variables. Random Forest and Multilayer Perceptron (MLP) algorithms are used to classify student learning styles based on the Visual, Auditory, and Kinesthetic (VAK) model. The data used comes from the Open University Learning Analytics Dataset (OULAD), which is processed through data merging, label coding, and feature transformation to improve model performance. Model evaluation was conducted using accuracy, precision, recall, and F1-score metrics. The results showed that the MLP model achieved perfect performance with a score of 100% on all metrics, while Random Forest showed excellent performance with a score of 99%. The implementation of stratified split proved effective in maintaining the balance of data distribution, ensuring adequate representation for all classes, including students with disabilities. This research makes an important contribution in developing more accurate learning style classification models and supporting more inclusive learning approaches.