Claim Missing Document
Check
Articles

Found 2 Documents
Search

SOSIALISASI PERLINDUNGAN HUKUM TERHADAP ANAK PENYANDANG DISABILITAS SEBAGAI KORBAN BULLYING DI SKH ISLAM TERPADU YARFIN Dani Firlanddani; Ardiansah; Evi Rahmatin; Harfinsha Aftha Assiddiqie; Intansari; Muhammad Alfatsany Wildan; Muhammad Raihan; Pebri Anwar; Rahmadi; Tati Karhati; Erma Hari Alijana
Integrative Perspectives of Social and Science Journal Vol. 2 No. 03 Juni (2025): Integrative Perspectives of Social and Science Journal
Publisher : PT Wahana Global Education

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Anak penyandang disabilitas sering kali menjadi kelompok rentan dalam masyarakat, terutama dalam konteks perundungan (bullying). Perlindungan hukum terhadap mereka menjadi aspek krusial dalam upaya menciptakan lingkungan yang aman dan inklusif. Kegiatan pengabdian kepada masyarakat ini bertujuan untuk memberikan pemahaman yang lebih dalam kepada siswa, guru, serta orang tua di Sekolah Khusus Islam Terpadu (SKH IT) YARFIN mengenai hak-hak anak penyandang disabilitas dan perlindungan hukum yang dapat mereka peroleh ketika menjadi korban bullying. Melalui sosialisasi ini, peserta akan dibekali dengan pengetahuan mengenai ketentuan hukum yang berlaku, seperti Undang-Undang Nomor 8 Tahun 2016 tentang Penyandang Disabilitas, Undang-Undang Nomor 35 Tahun 2014 tentang Perlindungan Anak, serta mekanisme pengaduan dan perlindungan yang dapat ditempuh jika terjadi kasus perundungan. Dengan adanya kegiatan ini, diharapkan terbentuk kesadaran kolektif dalam mencegah dan menanggulangi perundungan terhadap anak penyandang disabilitas di lingkungan sekolah.
Applied Machine Learning for Early Diabetes Detection Based on Symptoms Intansari; Tris Eryando; Miftakul Fira Maulidia; Edi Utomo Putro
BKM Public Health and Community Medicine The 12th UGM Public Health Symposium
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Purpose: Diabetes is a chronic disease that occurs either when the pancreas does not produce enough insulin or when the body cannot effectively use the insulin it produce. Diabetes is often referred to as a silent killer because this disease can affect all organs of the body and cause various symptoms. About 422 million people worldwide have diabetes, the majority living in low-and middle-income countries, and 1.5 million deaths are directly attributed to diabetes each year. Early diabetes detection is essential to prevent serious complications in patients based on symptoms. Method: This study present a prediction using various Machine Learning (ML) algorithm based on age, gender and symptoms as predictor such as polyuria, feeling thirsty, easy itching, losing weight unintentionally, blurred vision, irritability and feeling tired. We have used such a dataset of 520 patients, which has been collected using direct questionnaires from the patients of Sylhet Diabetes Hospital, Bangladesh. Results: This study compared several machine learning algorithms such as Logistic Regression, Naive Bayes, Classification and Regression Trees (CART), K-Nearest Neighbour, and Random Forest to develop diabetes prediction model. Several parameter, including classification accuracy (CA), F1 score, precision, and recall were used to evaluate the models. CART algorithm showed better parameter values, with CA 97,1%, recall 0.953, precision 0.932, and F1 score 0.901. Conclusion: The use of machine learning models for early detection of diabetes with an accuracy rate of 97,1%. ML offers the ability to develop a quick prediction model for diabetes screening based on symptoms. We hope that with this study can contribute to the wider community by decrease the incidence of diabetes through recognizing suspicious symptoms. To prevent diabetes the future this machine learning model can be developed into a mobile application that the public can widely access.